1049 数列的片段和 (20 分)
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入格式:
输入第一行给出一个不超过 105 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以空格分隔。
输出格式:
在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。
输入样例:
4
0.1 0.2 0.3 0.4
输出样例:
5.00
算法思想:
- 用排列组合计算序列中每一项在所有子列中出现的次数,
- 记该项左边有L项,右边有R项,则该项出现的总次数为 (L+1)*(R+1),
- 因为这些子列的最左元素必须在该项左边或为该项;最右元素必须在该项右边或为该项,
- 则左右各有L+1种和R+1种选择方法。
Python3 代码如下:
N=int(input())
A=list(map(float,input().split(' ')))
sum=0.0
for i,x in enumerate(A): #(L+1)×(R+1)×该项
sum+= (i+1)*(len(A)-i)*x #先算整数,后浮点较快!
print("%.2f"%(sum))
欢迎讨论。