自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(189)
  • 资源 (6)
  • 收藏
  • 关注

原创 最全大模型术语表,从入门到入土,​​从此告别小白!​

预定义模型是由 AI 厂商训练并提供的现成模型,用户可以直接调用而无需自行训练。这些闭源模型(如 GPT-4、Claude 等)通常经过大规模训练和优化,能力强大且易于使用,适合快速开发应用或缺乏自主训练资源的团队。

2025-06-10 22:30:26 557

原创 SPSS常用方法及操作

SPSS常用方法检验正态性相关性分析线性回归分析卡方检验独立样本T检验配对样本T检验单因素方差分析及多重比较非参数检验(秩和检验)二元Logistic回归分析案例分析检验正态性1 直方图正态曲线2 P-P图、Q-Q图3 KS检验(样本量>=2000)、SW检验(样本量<2000):P>0.05时表示服从正态性相关性分析俩个变量平等,俩个变量均为连续数值型变量之间的相关性分析——peason相关分析(正态)系数r,P<0.05才进行分析,r>0.7强正相关等

2021-09-24 22:13:47 23802 1

原创 MediaPipe如何训练自己的手势数据

前言:由于Google上面提供的默认模型只包含7种手势,如何自定义自己的模型,虽然官网给了示例,但是是基于Google的平台Colab运行的,这个需要传文件到Google云盘,然后也比较麻烦,那么如何在本地运行,折腾了挺久,网上太多无效的文章,所以在这里分享。2、查看模型接收的格式,可以运行官网示例,下载官网示例数据集进行查看。整理好自己的数据集,修改数据集路径即可,hagrid-sample-30k-384p 数据集是hagrid的精简版,包含18种手势和无手势,可在我的资源里面进行下载。

2025-06-12 16:58:19 173

原创 安装mediapipe-model-maker报错解决

尝试过各种方法,一直没有解决,后面使用Windows环境下的wsl解决,因为是Linux内核,Python 环境采用 3.10,因为这个依赖 Tensorflow,Tensorflow不支持太高版本的 Python。在Windows下执行。

2025-06-12 16:17:12 29

原创 YOLO训练保持原有识别能力

YOLOv8训练新数据集时会出现灾难性遗忘问题,导致模型丢失原有识别能力。本文提供了三种解决方案:1)联合训练新旧数据集;2)迁移学习冻结部分网络层;3)模型集成分别推理。关键措施包括合并数据集、降低学习率、使用余弦退火和学习率衰减等。最佳实践建议保留部分旧数据样本,确保标注格式统一,并延长训练周期。验证时需同时评估新旧类别性能,注意监控各类别AP变化。对于新旧任务差异过大的情况,建议训练两个独立模型。

2025-06-06 16:26:43 387

原创 LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人创新性地融合智能手机与专用硬件,通过多模态技术实现情感化交互。其核心技术架构采用分层设计:硬件层提供传感器支持,手机层负责计算,软件层整合传统算法与大模型。手势识别结合MediaPipe关键点检测与红外传感器,物体识别采用YOLOv5等轻量模型与大模型语义理解互补,边缘检测依靠多传感器融合确保安全移动。这种混合架构平衡了性能与功耗,传统算法处理实时任务,大模型负责复杂认知,既保障隐私又实现自然交互,展现了AI硬件领域的前沿设计思路。

2025-06-06 10:06:54 754

原创 ML Kit与YOLO:移动AI与实时检测终极对决

ML Kit和YOLO是两种不同的技术方案,虽然都涉及计算机视觉和目标检测,但它们在设计目标、技术实现和应用场景上有显著差异。总之,ML Kit是“低代码工具”,而YOLO是“可编程框架”,根据项目需求选择或组合即可。

2025-06-05 14:34:41 309

原创 Jupyter Notebook 是否需要与环境绑定

Jupyter Notebook 是否与环境绑定以及是否需要每个环境都安装,取决于你的使用需求。启动 Jupyter 后,可以在界面中选择不同的内核(Kernel)切换环境。这样启动的 Jupyter 会默认使用当前环境的 Python。后,Jupyter 会自动检测所有已安装。此后新建的 Conda 环境只需安装。,即可在 Jupyter 中直接使用。安装 Jupyter,然后通过。

2025-05-29 16:18:32 426

原创 LLM长期记忆和上下文对话的区别

(如GPT-4的32k tokens),仅能处理当前会话内的信息。通过外部系统(如数据库、向量存储)实现跨会话、跨任务的信息持久化存储。LLM长期记忆和上下文对话是AI系统中两种不同的记忆机制,它们在功能、技术实现和应用场景上存在显著差异。例如,AI助手可先用上下文窗口处理当前对话,同时调用Memobase检索用户历史偏好生成个性化回复。:结构化、可扩展的“外部记忆库”,需结合检索增强生成(RAG)等技术调用。:短时、临时的“工作记忆”,受限于窗口大小和注意力衰减效应。

2025-05-26 11:41:04 331

原创 Dify长期记忆插件: Mem0 与 Memobase

前言:如何在Dify上面快速实现长期记忆(不了解长期记忆的可以查看文章)。技术选型在开发实现中占据重要地位,Dify目前提供了众多插件,我们来对比热门的 mem0 和 memobase。在技术架构、应用场景和功能特性上存在显著差异。需要快速集成动态记忆、实时性要求高(如聊天机器人)、开发资源有限的中小型项目。,通过实时更新和衰减机制保持记忆的新鲜度;需长期用户画像分析、高并发处理(如教育平台)、隐私敏感的企业级应用。作为 Dify 平台中两种主流的记忆组件,,通过结构化存储实现长期记忆的精准调用。

2025-05-26 11:38:37 803

原创 CentOSStream9安装Miniconda,亲测!

选择安装路径(默认 ~/miniconda3),或自定义路径(如 /opt/miniconda3)。询问是否初始化 Conda 时,输入 yes(会自动添加环境变量)。确保服务器有 sudo 权限 或直接以 root 用户 操作。如果安装到系统目录(如 /opt),需确保有写入权限。按 Enter 阅读许可协议,输入 yes 同意。有任何疑问可留言或私聊!

2025-05-24 13:55:18 321

原创 Linux通过Git方式安装Dify(手把手教学)

输入命令,然后下面输入y确定。安装成功后输入验证。

2025-05-23 16:57:16 510 1

原创 AI玩具方案

• 优势:海外云服务商提供多语种支持(如英语、西班牙语、法语等),且具备成熟的噪声处理、远场识别能力,无需自研声学模型。• 自建场景:若需定制IP角色声音(如玩具专属语音),可部署开源模型Tortoise-TTS(需NVIDIA显卡)。• 自建高频语种TTS模型(Tortoise-TTS),租用GPU服务器部署轻量级大模型(如Phi-3)。• 低频长尾需求(如小语种/方言):通过自建模型+缓存(如Redis)降低API调用频次。• 推荐方案:混合部署(核心语种用API,小众语种自建)

2025-05-10 11:02:10 949

原创 Conda激活环境无效

首先手动加载 Conda 配置​​(注意在管理员的cmd窗口或者powershell窗口)如果执行报错如下:. “C:\software\anaconda3\shell\condabin\conda-hook.ps1” . : 无法加载文件C:\software\anaconda3\shell\condabin\conda-hook.ps1,因为在此系统上禁止运行脚本那么按下面流程解决。

2025-05-09 11:54:42 256

原创 Windows下Dify连接Ollama无效

• 版本检查:确认Dify和Ollama均为最新版本,避免已知兼容性问题。• 若Dify通过Docker部署,需使用宿主机IP(如。• 模型名称匹配:确保Dify中填写的模型名称(如。• 检查Docker容器是否在同一网络,或通过。• 模型兼容性:部分模型可能需要额外参数(如。),需参考Ollama文档调整Dify配置。)与Ollama已下载的模型完全一致。• 验证模型是否下载成功(如。若未下载模型,需先执行。需要管理员打开cmd。

2025-05-09 09:55:33 975

原创 Dify工作流接收API请求带文件(有小坑)

在上面这样一个工作流中,开始节点需要接收一个音频文件,那么如何构建请求。首先看一下官方给的示例,这里注意如果采用 local_file 模式,需要先调用上传文件接口,然后拿到文件id。实际请求如下,file 需要放到 inputs 里面。如果还有其他疑问,欢迎留言探讨!

2025-05-08 17:24:03 1181 6

原创 在线dify访问本地ollama报错

• 安全警告:暴露公网端口需启用TLS加密,可参考Ollama官方文档配置HTTPS。• 替代方案:若企业有云服务器,可在云端部署Ollama并通过VPC专线连接Dify。• 性能优化:若需长期使用,建议购买Cpolar付费套餐获得固定域名。• 任务栏右键Ollama图标 → 退出 → 重新启动Ollama。右键点击 此电脑 → 属性 → 高级系统设置 → 环境变量。• 基础URL:内网穿透地址或映射后的公网地址。→ 设置 → 模型供应商 → Ollama。• 外部端口:任意未占用端口(如。

2025-05-08 10:37:53 1068

原创 Python 常用Web框架对比

• 理由:内置Admin后台、权限系统,适合教育管理系统等需要快速开发的全栈项目。• "包含电池"设计,内置ORM、Admin后台、认证系统等20+组件。• 短板:性能相对较低(单请求响应约50ms),灵活性受限。• 200KB轻量内核,支持按需加载扩展(如数据库、表单)• 严格MVC架构规范,插件化开发支持(如DRF扩展)• 高性能选择:FastAPI(自动化文档+异步支持)• 案例:智能客服系统(推理延迟优化至300ms)• 备选方案:Sanic(金融级低延迟场景)

2025-04-22 16:25:19 484

原创 主流向量数据库核心技术对比与选型指南(2025年4月)

2025年向量数据库市场呈现三大趋势——多模态支持扩展至视频流处理、边缘端推理延迟突破50ms阈值、隐私计算与联邦学习深度整合。◦ 分布式架构支持十亿级向量规模,延迟低至毫秒级,适用于超大规模企业级场景。◦ 提供IVF_FLAT、HNSW等6种索引算法,灵活平衡精度与效率。◦ 全托管云服务支持分钟级部署,API调用成功率99.99%◦ 内置RBAC权限体系与数据加密功能,满足金融级安全需求。◦ 支持向量与标量数据联合检索,满足多条件过滤需求。◦ 支持动态数据更新与混合搜索,适配实时业务需求。

2025-04-15 17:15:29 648

原创 主流Embedding模型优劣势解析与技术选型指南(2025年4月)

◦ 长文本处理能力弱于BGE-M3(5000+ tokens文档召回率低28%)• BGE-M3支持4bit量化,显存占用可压缩至2.1GB(精度损失<5%)◦ 支持边缘计算部署(内存占用3.2GB,i9处理器45ms/token)◦ 多语言支持(194种语言)与长文本处理(8K tokens)能力双优。◦ 金融数据向量映射误差比BGE-M3低0.08(余弦相似度)◦ 中文语义捕捉能力弱于BGE-M3(测试低15-20%)◦ 显存占用高达6.8GB(FP16),需高端显卡支持。

2025-04-15 17:11:30 1812

原创 Ollama模型显存管理机制解析与Flask部署方案对比

• PyTorch与CUDA版本不匹配会导致显存异常(推荐CUDA 12.1 + PyTorch 2.3)。• 部署7B模型时,启动后未调用时显存占用约6GB,调用后峰值占用8GB,闲置5分钟后降至6GB。• 示例:24GB显存服务器最多部署3个7B模型(3×6GB=18GB)。• 若服务器配置24GB显存,可同时保留3个7B模型权重以支持快速切换。• 启用Ollama分块加载机制,避免单次显存溢出。• 若同时运行多个模型,需预留20%显存冗余。:7B模型显存从8GB→4.8GB。Ollama部署模型后,

2025-04-14 23:04:10 1003

原创 访问不到服务器上启动的llamafactory-cli webui

兼顾安全性与便捷性。具体命令参数需根据实际服务器 IP 和端口调整。浏览器访问宿主机 IP + 7860 端口。• 通过 Nginx 反向代理实现负载均衡。文件,需按日志指引下载并放置到指定路径;• 检查服务器安全组/防火墙是否放行。• 非 root 用户运行时添加。:需确保服务器防火墙开放了。

2025-04-14 18:08:34 1032

原创 虚拟机和WSL对比

通过在物理硬件之上创建一个或多个虚拟化层,模拟完整的计算机系统,包括硬件、操作系统和应用程序。•。

2025-04-10 17:38:00 1108

原创 ​​大数据量统计优化方案(日/月/年统计场景)​

将近期数据(热数据)与历史数据(冷数据)存储在不同介质(如SSD+HDD),热数据保留最近1年,冷数据压缩归档。• 使用列式存储(如Parquet、ORC),适合分析型查询,压缩率提升50%-70%,减少磁盘读取量。:在数据仓库中构建每日汇总表(DWS),存储当日核心指标(如订单量、GMV),避免实时计算全量数据。• 使用Redis缓存高频统计结果(如昨日GMV、Top10商品),设置TTL(如1小时)。• 对高频统计查询(如月报)创建物化视图,定期刷新(如每日凌晨),存储预计算结果。

2025-04-09 16:29:16 666

原创 全量微调、增量微调、局部微调对比

全量微调(Full Fine-Tuning)、增量微调(Incremental Fine-Tuning)和局部微调(Partial Fine-Tuning) 的核心区别和应用场景如下:

2025-04-02 15:03:41 618

原创 Prompt技巧-如何让大模型回复得更加精准

要让大模型的回复更加精准,关键在于优化提示词(Prompt)的设计,同时需要结合具体任务选择合适的模型类型(推理大模型 vs. 通用大模型)。通过结合精准的提示词设计和针对性的模型选择,可以显著提升大模型输出的准确性和可靠性。

2025-04-02 09:19:31 570

原创 大量意图识别方案

若事项间存在流程依赖(如"办护照前需先办无犯罪证明"),可引入。Elasticsearch关键词召回。一级召回: 关键词/规则匹配。Dify知识库检索Top10。二级召回: 语义检索。

2025-04-01 17:35:15 698

原创 Agent流式输出方案

如果需要更具体的 Dify 工作流配置或 SpringBoot 调优技巧,可以进一步讨论!SSE/WebSocket 流式输出(合并结果)后端中,如果前端发送请求后,后端依次调用。HTTP 请求(/stream-chat)返回给前端,是可以实现的。流式返回(工具结果+模型回复)

2025-03-31 14:46:20 973

原创 解决Dify低并发方案

如果需要具体配置示例,可参考 Dify 官方文档或阿里云计算巢方案。等方式显著提升并发能力。Dify 默认的单机部署确实可能面临。的并发限制,但企业可以通过。

2025-03-31 14:45:22 2194

原创 百万级数据表查询优化实战指南

300万级数据表优化,首先要做好索引设计和查询优化,这是性价比最高的方案。对于持续增长的表,要提前规划好分表策略。

2025-03-27 23:07:05 339

原创 查询操作是否需要使用事务?

需要保证多次查询看到同一数据快照 → 用事务简单的独立查询 → 可以不用事务先查后改的业务流程 → 必须用事务理解这个区别,能帮助我们在保证数据一致性的同时,避免不必要的性能损耗。

2025-03-24 23:34:45 385

原创 Electron打包工具对比

在 Electron 生态中,打包工具的选择直接影响开发效率、配置复杂度和最终应用的性能。

2025-03-06 11:51:27 2954

原创 Spring框架中的单例Bean是线程安全的吗

在 Spring 框架中,单例 bean 本身并不一定是线程安全的,下面从单例 bean 的概念、线程安全的影响因素以及实现线程安全的方法等方面进行详细分析。

2025-03-06 09:12:45 821

原创 Electron如何执行Python exe程序

在 Electron 应用中执行打包后的 Python exe 程序,通常可以借助 Node.js 的模块来实现。

2025-03-05 15:26:53 721

原创 工具类中如何注入Bean

在 Java 的 Spring 框架里,工具类要注入 Bean 存在一定挑战,因为工具类常使用静态方法,而 Spring 的依赖注入主要针对实例对象。

2025-02-10 17:07:07 384

原创 本地Windows部署deepseek

网址,傻瓜式安装,这里就不多说了。

2025-02-08 15:27:49 349

原创 Java中的接口和抽象类为什么要这么设计

设计目的抽象类的主要目的是提供部分实现和部分抽象方法,作为子类共享的基类。抽象类允许子类继承代码,同时强制子类实现特定的行为。抽象类更适合于定义具有共同行为和属性的类之间的层次结构。方法类型和修饰符方法类型抽象类可以包含抽象方法(没有方法体)和具体方法(有方法体)。抽象类还可以包含构造器、静态方法、实例字段和静态字段。修饰符抽象方法: 使用abstract修饰,并且可以有publicprotected或默认(包级私有)访问修饰符。具体方法: 可以使用publicprotectedprivate。

2025-02-07 09:24:08 374

原创 如果现在父类的一个方法定义成private访问权限,在子类中将此方法声明为default访问权限,那么这样还叫重写吗?

在Java中,。

2025-01-21 09:23:21 331

原创 GraalVM和普通JDK区别

JDK 17与GraalVM JDK 17之间存在一些显著的区别,这些区别主要体现在性能、功能特性和使用场景上。以下是对这两者的详细比较以及开发时应该如何选择和使用它们的建议。

2025-01-14 17:41:43 1493

原创 java.security.InvalidKeyException: Illegal key size

在使用 javax.crypto 相关类下AES 解密时,出现这个错误,但是在有的 jdk8 版本不会出现这个问题,研究发现是 jdk8 偏低版本会出现这个问题。

2024-12-13 09:26:15 1218

MediaPipe手势识别示例数据集

包含石头、剪刀、布、none四种类型,每种125个图片

2025-06-12

mysql-installer-community-8.0.42.0.msi

mysql-installer-community-8.0.42.0.msi镜像

2025-06-11

23种设计模式-黑马,设计模式概述

23种设计模式

2025-06-11

【多线程编程】基于Java的多线程技术详解:从基础概念到高级应用的设计与实现

内容概要:本文详细介绍了多线程编程的核心概念、创建方式、线程安全问题及其解决方案、线程通信机制以及JDK5.0引入的新特性。文章首先解释了程序、进程和线程的概念,接着介绍了线程调度机制和多线程的优势。文中讲解了两种创建线程的方式:继承Thread类和实现Runnable接口,并对比了两者的异同。对于线程安全问题,文章通过具体案例展示了如何使用同步机制(如synchronized关键字和Lock接口)来避免数据竞争。此外,文章还探讨了线程间的通信机制(如wait/notify)以及生产者-消费者模型。最后,介绍了JDK5.0新增的线程创建方式,包括实现Callable接口和使用线程池。 适合人群:具备一定编程基础,特别是Java编程经验的研发人员,尤其是对多线程编程感兴趣的开发者。 使用场景及目标:①理解多线程编程的基本概念,如程序、进程与线程的区别;②掌握创建和启动线程的方法;③学会识别和解决线程安全问题;④了解线程间通信机制及其应用场景;⑤熟悉JDK5.0新增的线程创建方式,如线程池的使用。 其他说明:本文不仅提供了理论知识,还结合了大量代码示例,帮助读者更好地理解和实践多线程编程。建议读者在阅读过程中动手实践代码示例,以加深理解。同时,对于复杂的线程安全问题和线程通信机制,建议结合实际项目进行深入研究。

2025-06-11

【Java技术演进】JDK8-17新特性详解:语法优化、API更新与GC改进助力高效开发从JDK8(下)

内容概要:本文详细介绍了JDK8-17期间Java语言及其API的主要新特性。其中包括交互式编程环境jShell的引入,简化异常处理的改进,局部变量类型推断、instanceof模式匹配、switch表达式的增强等语法特性,以及文本块、Record、密封类等新特性。API层面,文章探讨了Optional类的改进,String类内部存储结构的变化及新方法的添加,Applet API的移除,以及GC机制(如G1、Shenandoah、ZGC)的演进。这些特性共同推动了Java语言的发展,提高了开发效率和代码质量。 适合人群:具备一定Java编程经验的研发人员,特别是关注Java语言发展和技术演进的技术爱好者和从业者。 使用场景及目标:①理解并掌握JDK8-17期间Java语言的核心语法变化,如局部变量类型推断、switch表达式的增强等;②熟悉API层面的改进,如Optional类的优化、String类的更新;③深入学习新的垃圾回收机制,提升大型应用的性能表现;④探索Record、密封类等新特性的应用场景,优化代码设计。 其他说明:文章不仅提供了详细的理论讲解,还结合了丰富的代码示例,便于读者理解和实践。此外,文章还提及了Java语言在未来计算模式下的发展方向,强调了Java在面对云计算、AI等新技术浪潮时的适应性和改进空间。

2025-06-11

【Java技术领域】JDK 8-17新特性详解:版本迭代、关键特性和应用实践(上)

内容概要:本文详细介绍了从Java 8到Java 17的版本迭代及新特性,重点讲解了Java 8的重要更新,包括Lambda表达式、函数式接口、方法引用与构造器引用、Stream API等内容。文章首先概述了Java版本的发布特点,特别是从Java 9开始的每半年一次更新和长期支持版本(LTS)的发布策略。接着深入探讨了Java 8引入的Lambda表达式,通过多个示例展示了其语法格式和应用场景。随后介绍了函数式接口的概念及其与Lambda表达式的关联,列举了常见的内置函数式接口。此外,还详细解释了方法引用和构造器引用的使用方法,以及Stream API的强大功能和操作流程。最后简要提及了Java 9及以后版本的一些新特性。 适合人群:具备一定Java编程基础的研发人员,尤其是对Java新特性感兴趣的开发者。 使用场景及目标:①理解Java版本迭代的历史和发布策略;②掌握Java 8的核心新特性,如Lambda表达式、Stream API等;③学习如何使用函数式接口、方法引用和构造器引用简化代码;④熟悉Stream API的基本操作和应用场景。 阅读建议:本文内容详尽,涵盖了多个Java新特性,建议读者先理解Java 8的主要更新,再逐步学习后续版本的新特性。在学习过程中,结合代码示例进行实践,有助于更好地掌握相关知识点。

2025-06-11

【Java编程技术】深入解析Java反射机制及其应用:类加载、API操作与动态性实现

内容概要:本文详细介绍了Java反射机制的概念、原理、API使用方法及其应用场景。首先解释了反射的背景和意义,指出反射允许程序在运行期间获取类的内部信息并操作其属性和方法。接着阐述了反射的主要功能,包括获取类的结构信息、构造类实例、调用方法、处理注解等。文中还深入探讨了类加载过程、ClassLoader的工作机制及其分类,强调了不同类加载器的作用和层级关系。最后,通过具体的应用案例展示了反射在创建对象、调用方法、读取注解等方面的使用方法,特别提到了反射的动态性和灵活性,但也指出了其性能较低和可读性差的缺点。 适用人群:具备一定Java编程基础,尤其是对面向对象编程有一定理解的研发人员,特别是那些希望深入了解Java底层机制和框架设计原理的开发者。 使用场景及目标:①动态创建类的实例并调用其方法;②读取和处理类的注解信息;③在框架开发中实现灵活的类加载和模块隔离;④理解类加载器的工作原理,优化类加载性能;⑤通过反射机制提升代码的灵活性和扩展性。 其他说明:反射虽然强大,但在实际项目中应谨慎使用,因为它可能会降低程序的性能和可读性。建议在框架开发和工具类库中合理运用反射,以增强系统的灵活性和可维护性。此外,由于反射绕过了编译期检查,可能导致运行时错误,因此在使用时应注意安全性。

2025-06-11

Java面试黑马2024

Java面试黑马2024

2025-06-11

DeepSeek赋能职场-进阶(清华).zip

DeepSeek赋能职场-进阶(清华)

2025-06-11

DeepSeek:从入门到精通(清华).zip

DeepSeek:从入门到精通(清华)

2025-06-11

大模型术语表:涵盖AI对话、图像、视频等多领域代表性产品及关键技术概念解析

内容概要:本文档《大模型术语表.pdf》详细介绍了大模型及相关领域的关键术语和技术概念。文档首先列举了各类代表性产品,如ChatGPT、Midjourney等,涵盖AI对话、图像、视频、编程等多个领域。随后,文档深入解释了大模型的核心组件和技术,包括但不限于参数、权重、模型、大模型(LLM)、推理、AGI、AIGC等。此外,文档还探讨了模型的训练与优化方法,如预训练、微调、模型压缩等,并介绍了RAG(检索增强生成)技术及其应用。最后,文档阐述了智能代理(Agent)、多模态模型、工作流等高级概念,以及它们在实际应用中的作用。 适合人群:对大模型及相关技术感兴趣的初学者、研究人员、开发人员以及希望深入了解AI技术的企业决策者。 使用场景及目标:①帮助读者理解大模型的基本概念和技术细节;②为开发人员提供技术选型和应用开发的指导;③为企业决策者提供战略规划和技术创新的参考;④为研究人员提供前沿技术和未来发展方向的指引。 其他说明:本文档不仅涵盖了大模型的基础知识,还深入探讨了其应用场景和技术实现,为读者提供了全面的学习和参考资料。建议读者在学习过程中结合具体案例和技术文档进行实践,以加深对大模型的理解和应用能力。

2025-06-11

hagrid轻量数据集带标签.txt,yolo可直接运行

和之前上传的hagrid-sample-30K-384p相同,进行了格式处理,标签为.txt,yolo可直接运行

2025-06-11

软考PPT-某知名机构

2024年

2025-06-11

狗图片数据集+标签.xml

训练集112张图片和验证集27张图片,可直接训练

2025-06-11

VSCode1.85.2版本

在某些低版本服务器上,无法使用高版本的VSCode进行Remote远程连接,需要低版本VSCode

2025-06-11

图像检测-头盔数据集-yolo可直接训练

里面包含训练集2605、测试集82、验证集114

2025-06-11

图像检测-hagrid训练数据集带标注

hagrid官方数据集上百G,过于庞大,这个数据集包含30000多张图片和标注的.json文件,18种手势类型,可直接训练

2025-06-10

Java开发手册(黄山版)

Java开发手册(黄山版)当前最新

2024-01-23

libaio-0.3.107-10.el6.x86_64.rpm

解决MySQL安装中缺少libaio依赖问题

2022-10-09

jsp+servlet员工管理系统.zip

Java毕业设计员工管理系统

2022-01-04

eq_data_30_day_m1.json

30天全球地震数据集

2021-03-16

sitka_weather_2018_simple.csv

某地区2018年简易气温数据集

2021-03-16

长理复试真题及答案.zip

长沙理工大学研究生从2012年至2020年的复试真题及答案,整理的非常详细,相比于在某些学长那里买的资料,我这个已经是将答案改了并做了对比的答案。

2020-05-24

C语言试题库2.docx

针对应对C语言考试的同学和对C语言编程感兴趣的同学

2021-04-10

Delphi课程设计.zip

以前大二学的Delphi,然后做了一个餐饮管理系统,数据库用的是SQL server,里面的东西我都忘记了,刚好电脑里有就上传了,免费下载,希望对在看的您有帮助。

2021-03-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除