- 博客(189)
- 资源 (6)
- 收藏
- 关注

原创 最全大模型术语表,从入门到入土,从此告别小白!
预定义模型是由 AI 厂商训练并提供的现成模型,用户可以直接调用而无需自行训练。这些闭源模型(如 GPT-4、Claude 等)通常经过大规模训练和优化,能力强大且易于使用,适合快速开发应用或缺乏自主训练资源的团队。
2025-06-10 22:30:26
557

原创 SPSS常用方法及操作
SPSS常用方法检验正态性相关性分析线性回归分析卡方检验独立样本T检验配对样本T检验单因素方差分析及多重比较非参数检验(秩和检验)二元Logistic回归分析案例分析检验正态性1 直方图正态曲线2 P-P图、Q-Q图3 KS检验(样本量>=2000)、SW检验(样本量<2000):P>0.05时表示服从正态性相关性分析俩个变量平等,俩个变量均为连续数值型变量之间的相关性分析——peason相关分析(正态)系数r,P<0.05才进行分析,r>0.7强正相关等
2021-09-24 22:13:47
23802
1
原创 MediaPipe如何训练自己的手势数据
前言:由于Google上面提供的默认模型只包含7种手势,如何自定义自己的模型,虽然官网给了示例,但是是基于Google的平台Colab运行的,这个需要传文件到Google云盘,然后也比较麻烦,那么如何在本地运行,折腾了挺久,网上太多无效的文章,所以在这里分享。2、查看模型接收的格式,可以运行官网示例,下载官网示例数据集进行查看。整理好自己的数据集,修改数据集路径即可,hagrid-sample-30k-384p 数据集是hagrid的精简版,包含18种手势和无手势,可在我的资源里面进行下载。
2025-06-12 16:58:19
173
原创 安装mediapipe-model-maker报错解决
尝试过各种方法,一直没有解决,后面使用Windows环境下的wsl解决,因为是Linux内核,Python 环境采用 3.10,因为这个依赖 Tensorflow,Tensorflow不支持太高版本的 Python。在Windows下执行。
2025-06-12 16:17:12
29
原创 YOLO训练保持原有识别能力
YOLOv8训练新数据集时会出现灾难性遗忘问题,导致模型丢失原有识别能力。本文提供了三种解决方案:1)联合训练新旧数据集;2)迁移学习冻结部分网络层;3)模型集成分别推理。关键措施包括合并数据集、降低学习率、使用余弦退火和学习率衰减等。最佳实践建议保留部分旧数据样本,确保标注格式统一,并延长训练周期。验证时需同时评估新旧类别性能,注意监控各类别AP变化。对于新旧任务差异过大的情况,建议训练两个独立模型。
2025-06-06 16:26:43
387
原创 LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人创新性地融合智能手机与专用硬件,通过多模态技术实现情感化交互。其核心技术架构采用分层设计:硬件层提供传感器支持,手机层负责计算,软件层整合传统算法与大模型。手势识别结合MediaPipe关键点检测与红外传感器,物体识别采用YOLOv5等轻量模型与大模型语义理解互补,边缘检测依靠多传感器融合确保安全移动。这种混合架构平衡了性能与功耗,传统算法处理实时任务,大模型负责复杂认知,既保障隐私又实现自然交互,展现了AI硬件领域的前沿设计思路。
2025-06-06 10:06:54
754
原创 ML Kit与YOLO:移动AI与实时检测终极对决
ML Kit和YOLO是两种不同的技术方案,虽然都涉及计算机视觉和目标检测,但它们在设计目标、技术实现和应用场景上有显著差异。总之,ML Kit是“低代码工具”,而YOLO是“可编程框架”,根据项目需求选择或组合即可。
2025-06-05 14:34:41
309
原创 Jupyter Notebook 是否需要与环境绑定
Jupyter Notebook 是否与环境绑定以及是否需要每个环境都安装,取决于你的使用需求。启动 Jupyter 后,可以在界面中选择不同的内核(Kernel)切换环境。这样启动的 Jupyter 会默认使用当前环境的 Python。后,Jupyter 会自动检测所有已安装。此后新建的 Conda 环境只需安装。,即可在 Jupyter 中直接使用。安装 Jupyter,然后通过。
2025-05-29 16:18:32
426
原创 LLM长期记忆和上下文对话的区别
(如GPT-4的32k tokens),仅能处理当前会话内的信息。通过外部系统(如数据库、向量存储)实现跨会话、跨任务的信息持久化存储。LLM长期记忆和上下文对话是AI系统中两种不同的记忆机制,它们在功能、技术实现和应用场景上存在显著差异。例如,AI助手可先用上下文窗口处理当前对话,同时调用Memobase检索用户历史偏好生成个性化回复。:结构化、可扩展的“外部记忆库”,需结合检索增强生成(RAG)等技术调用。:短时、临时的“工作记忆”,受限于窗口大小和注意力衰减效应。
2025-05-26 11:41:04
331
原创 Dify长期记忆插件: Mem0 与 Memobase
前言:如何在Dify上面快速实现长期记忆(不了解长期记忆的可以查看文章)。技术选型在开发实现中占据重要地位,Dify目前提供了众多插件,我们来对比热门的 mem0 和 memobase。在技术架构、应用场景和功能特性上存在显著差异。需要快速集成动态记忆、实时性要求高(如聊天机器人)、开发资源有限的中小型项目。,通过实时更新和衰减机制保持记忆的新鲜度;需长期用户画像分析、高并发处理(如教育平台)、隐私敏感的企业级应用。作为 Dify 平台中两种主流的记忆组件,,通过结构化存储实现长期记忆的精准调用。
2025-05-26 11:38:37
803
原创 CentOSStream9安装Miniconda,亲测!
选择安装路径(默认 ~/miniconda3),或自定义路径(如 /opt/miniconda3)。询问是否初始化 Conda 时,输入 yes(会自动添加环境变量)。确保服务器有 sudo 权限 或直接以 root 用户 操作。如果安装到系统目录(如 /opt),需确保有写入权限。按 Enter 阅读许可协议,输入 yes 同意。有任何疑问可留言或私聊!
2025-05-24 13:55:18
321
原创 AI玩具方案
• 优势:海外云服务商提供多语种支持(如英语、西班牙语、法语等),且具备成熟的噪声处理、远场识别能力,无需自研声学模型。• 自建场景:若需定制IP角色声音(如玩具专属语音),可部署开源模型Tortoise-TTS(需NVIDIA显卡)。• 自建高频语种TTS模型(Tortoise-TTS),租用GPU服务器部署轻量级大模型(如Phi-3)。• 低频长尾需求(如小语种/方言):通过自建模型+缓存(如Redis)降低API调用频次。• 推荐方案:混合部署(核心语种用API,小众语种自建)
2025-05-10 11:02:10
949
原创 Conda激活环境无效
首先手动加载 Conda 配置(注意在管理员的cmd窗口或者powershell窗口)如果执行报错如下:. “C:\software\anaconda3\shell\condabin\conda-hook.ps1” . : 无法加载文件C:\software\anaconda3\shell\condabin\conda-hook.ps1,因为在此系统上禁止运行脚本那么按下面流程解决。
2025-05-09 11:54:42
256
原创 Windows下Dify连接Ollama无效
• 版本检查:确认Dify和Ollama均为最新版本,避免已知兼容性问题。• 若Dify通过Docker部署,需使用宿主机IP(如。• 模型名称匹配:确保Dify中填写的模型名称(如。• 检查Docker容器是否在同一网络,或通过。• 模型兼容性:部分模型可能需要额外参数(如。),需参考Ollama文档调整Dify配置。)与Ollama已下载的模型完全一致。• 验证模型是否下载成功(如。若未下载模型,需先执行。需要管理员打开cmd。
2025-05-09 09:55:33
975
原创 Dify工作流接收API请求带文件(有小坑)
在上面这样一个工作流中,开始节点需要接收一个音频文件,那么如何构建请求。首先看一下官方给的示例,这里注意如果采用 local_file 模式,需要先调用上传文件接口,然后拿到文件id。实际请求如下,file 需要放到 inputs 里面。如果还有其他疑问,欢迎留言探讨!
2025-05-08 17:24:03
1181
6
原创 在线dify访问本地ollama报错
• 安全警告:暴露公网端口需启用TLS加密,可参考Ollama官方文档配置HTTPS。• 替代方案:若企业有云服务器,可在云端部署Ollama并通过VPC专线连接Dify。• 性能优化:若需长期使用,建议购买Cpolar付费套餐获得固定域名。• 任务栏右键Ollama图标 → 退出 → 重新启动Ollama。右键点击 此电脑 → 属性 → 高级系统设置 → 环境变量。• 基础URL:内网穿透地址或映射后的公网地址。→ 设置 → 模型供应商 → Ollama。• 外部端口:任意未占用端口(如。
2025-05-08 10:37:53
1068
原创 Python 常用Web框架对比
• 理由:内置Admin后台、权限系统,适合教育管理系统等需要快速开发的全栈项目。• "包含电池"设计,内置ORM、Admin后台、认证系统等20+组件。• 短板:性能相对较低(单请求响应约50ms),灵活性受限。• 200KB轻量内核,支持按需加载扩展(如数据库、表单)• 严格MVC架构规范,插件化开发支持(如DRF扩展)• 高性能选择:FastAPI(自动化文档+异步支持)• 案例:智能客服系统(推理延迟优化至300ms)• 备选方案:Sanic(金融级低延迟场景)
2025-04-22 16:25:19
484
原创 主流向量数据库核心技术对比与选型指南(2025年4月)
2025年向量数据库市场呈现三大趋势——多模态支持扩展至视频流处理、边缘端推理延迟突破50ms阈值、隐私计算与联邦学习深度整合。◦ 分布式架构支持十亿级向量规模,延迟低至毫秒级,适用于超大规模企业级场景。◦ 提供IVF_FLAT、HNSW等6种索引算法,灵活平衡精度与效率。◦ 全托管云服务支持分钟级部署,API调用成功率99.99%◦ 内置RBAC权限体系与数据加密功能,满足金融级安全需求。◦ 支持向量与标量数据联合检索,满足多条件过滤需求。◦ 支持动态数据更新与混合搜索,适配实时业务需求。
2025-04-15 17:15:29
648
原创 主流Embedding模型优劣势解析与技术选型指南(2025年4月)
◦ 长文本处理能力弱于BGE-M3(5000+ tokens文档召回率低28%)• BGE-M3支持4bit量化,显存占用可压缩至2.1GB(精度损失<5%)◦ 支持边缘计算部署(内存占用3.2GB,i9处理器45ms/token)◦ 多语言支持(194种语言)与长文本处理(8K tokens)能力双优。◦ 金融数据向量映射误差比BGE-M3低0.08(余弦相似度)◦ 中文语义捕捉能力弱于BGE-M3(测试低15-20%)◦ 显存占用高达6.8GB(FP16),需高端显卡支持。
2025-04-15 17:11:30
1812
原创 Ollama模型显存管理机制解析与Flask部署方案对比
• PyTorch与CUDA版本不匹配会导致显存异常(推荐CUDA 12.1 + PyTorch 2.3)。• 部署7B模型时,启动后未调用时显存占用约6GB,调用后峰值占用8GB,闲置5分钟后降至6GB。• 示例:24GB显存服务器最多部署3个7B模型(3×6GB=18GB)。• 若服务器配置24GB显存,可同时保留3个7B模型权重以支持快速切换。• 启用Ollama分块加载机制,避免单次显存溢出。• 若同时运行多个模型,需预留20%显存冗余。:7B模型显存从8GB→4.8GB。Ollama部署模型后,
2025-04-14 23:04:10
1003
原创 访问不到服务器上启动的llamafactory-cli webui
兼顾安全性与便捷性。具体命令参数需根据实际服务器 IP 和端口调整。浏览器访问宿主机 IP + 7860 端口。• 通过 Nginx 反向代理实现负载均衡。文件,需按日志指引下载并放置到指定路径;• 检查服务器安全组/防火墙是否放行。• 非 root 用户运行时添加。:需确保服务器防火墙开放了。
2025-04-14 18:08:34
1032
原创 大数据量统计优化方案(日/月/年统计场景)
将近期数据(热数据)与历史数据(冷数据)存储在不同介质(如SSD+HDD),热数据保留最近1年,冷数据压缩归档。• 使用列式存储(如Parquet、ORC),适合分析型查询,压缩率提升50%-70%,减少磁盘读取量。:在数据仓库中构建每日汇总表(DWS),存储当日核心指标(如订单量、GMV),避免实时计算全量数据。• 使用Redis缓存高频统计结果(如昨日GMV、Top10商品),设置TTL(如1小时)。• 对高频统计查询(如月报)创建物化视图,定期刷新(如每日凌晨),存储预计算结果。
2025-04-09 16:29:16
666
原创 全量微调、增量微调、局部微调对比
全量微调(Full Fine-Tuning)、增量微调(Incremental Fine-Tuning)和局部微调(Partial Fine-Tuning) 的核心区别和应用场景如下:
2025-04-02 15:03:41
618
原创 Prompt技巧-如何让大模型回复得更加精准
要让大模型的回复更加精准,关键在于优化提示词(Prompt)的设计,同时需要结合具体任务选择合适的模型类型(推理大模型 vs. 通用大模型)。通过结合精准的提示词设计和针对性的模型选择,可以显著提升大模型输出的准确性和可靠性。
2025-04-02 09:19:31
570
原创 大量意图识别方案
若事项间存在流程依赖(如"办护照前需先办无犯罪证明"),可引入。Elasticsearch关键词召回。一级召回: 关键词/规则匹配。Dify知识库检索Top10。二级召回: 语义检索。
2025-04-01 17:35:15
698
原创 Agent流式输出方案
如果需要更具体的 Dify 工作流配置或 SpringBoot 调优技巧,可以进一步讨论!SSE/WebSocket 流式输出(合并结果)后端中,如果前端发送请求后,后端依次调用。HTTP 请求(/stream-chat)返回给前端,是可以实现的。流式返回(工具结果+模型回复)
2025-03-31 14:46:20
973
原创 解决Dify低并发方案
如果需要具体配置示例,可参考 Dify 官方文档或阿里云计算巢方案。等方式显著提升并发能力。Dify 默认的单机部署确实可能面临。的并发限制,但企业可以通过。
2025-03-31 14:45:22
2194
原创 查询操作是否需要使用事务?
需要保证多次查询看到同一数据快照 → 用事务简单的独立查询 → 可以不用事务先查后改的业务流程 → 必须用事务理解这个区别,能帮助我们在保证数据一致性的同时,避免不必要的性能损耗。
2025-03-24 23:34:45
385
原创 Spring框架中的单例Bean是线程安全的吗
在 Spring 框架中,单例 bean 本身并不一定是线程安全的,下面从单例 bean 的概念、线程安全的影响因素以及实现线程安全的方法等方面进行详细分析。
2025-03-06 09:12:45
821
原创 Electron如何执行Python exe程序
在 Electron 应用中执行打包后的 Python exe 程序,通常可以借助 Node.js 的模块来实现。
2025-03-05 15:26:53
721
原创 工具类中如何注入Bean
在 Java 的 Spring 框架里,工具类要注入 Bean 存在一定挑战,因为工具类常使用静态方法,而 Spring 的依赖注入主要针对实例对象。
2025-02-10 17:07:07
384
原创 Java中的接口和抽象类为什么要这么设计
设计目的抽象类的主要目的是提供部分实现和部分抽象方法,作为子类共享的基类。抽象类允许子类继承代码,同时强制子类实现特定的行为。抽象类更适合于定义具有共同行为和属性的类之间的层次结构。方法类型和修饰符方法类型抽象类可以包含抽象方法(没有方法体)和具体方法(有方法体)。抽象类还可以包含构造器、静态方法、实例字段和静态字段。修饰符抽象方法: 使用abstract修饰,并且可以有publicprotected或默认(包级私有)访问修饰符。具体方法: 可以使用publicprotectedprivate。
2025-02-07 09:24:08
374
原创 GraalVM和普通JDK区别
JDK 17与GraalVM JDK 17之间存在一些显著的区别,这些区别主要体现在性能、功能特性和使用场景上。以下是对这两者的详细比较以及开发时应该如何选择和使用它们的建议。
2025-01-14 17:41:43
1493
原创 java.security.InvalidKeyException: Illegal key size
在使用 javax.crypto 相关类下AES 解密时,出现这个错误,但是在有的 jdk8 版本不会出现这个问题,研究发现是 jdk8 偏低版本会出现这个问题。
2024-12-13 09:26:15
1218
【多线程编程】基于Java的多线程技术详解:从基础概念到高级应用的设计与实现
2025-06-11
【Java技术演进】JDK8-17新特性详解:语法优化、API更新与GC改进助力高效开发从JDK8(下)
2025-06-11
【Java技术领域】JDK 8-17新特性详解:版本迭代、关键特性和应用实践(上)
2025-06-11
【Java编程技术】深入解析Java反射机制及其应用:类加载、API操作与动态性实现
2025-06-11
大模型术语表:涵盖AI对话、图像、视频等多领域代表性产品及关键技术概念解析
2025-06-11
Delphi课程设计.zip
2021-03-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人