问题描述
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
思路:
这么简单的题想了很久,可能是太长时间没做题了。。。。因为每操作一次数组都会变成一个新的数组,所以要每一次操作后都重新排序。
代码
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner (new BufferedInputStream(System.in));
int n = cin.nextInt();
int ans = 0, i = 0;
int[] a = new int[n];
ArrayList<Integer> tans = new ArrayList<>();
for(i=0;i<n;i++) {
a[i] = cin.nextInt();
}
Arrays.sort(a);
for(i=1;i<n;i++) {
tans.add(a[i] + a[i-1]);
a[i] = a[i] + a[i-1];
Arrays.sort(a,i,n);
}
for(i=0;i<tans.size();i++) {
ans += tans.get(i);
}
System.out.println(ans);
}
}