置信函数的数学基础与公理化体系
1. 引言
置信函数(Belief Function)作为一种处理不确定性的数学工具,已经在多个领域中得到了广泛应用,尤其是在人工智能、统计推断和决策制定等方面。与传统的概率论不同,置信函数不仅可以处理随机性,还可以处理不精确性和不确定性。本文将深入探讨置信函数的数学基础及其公理化体系,旨在为读者提供一个系统的理解框架。
2. 数学基础
2.1 置信函数的定义
置信函数是定义在某一问题的可能答案集合上的函数,通常记为 ( \Theta )。设 ( \Theta ) 是一个有限的可能答案集合,称为辨识框架(frame of discernment)。对于 ( \Theta ) 的每一个子集 ( A ),置信函数 ( Bel ) 分配一个值 ( Bel(A) ),表示对 ( A ) 的信任程度。置信函数必须满足以下三个公理:
- 公理1 :( Bel(\emptyset) = 0 )
- 公理2 :( Bel(\Theta) = 1 )
- 公理3 :对于任意整数 ( n ) 和子集 ( A_1, A_2, \ldots, A_n \subset \Theta ),
[
Bel\left(\bigcup_{i=1}^n A_i\right) \geq \sum_{I \subseteq {1,2,\ldots,n}, I \neq \emptyset} (-1)^{|I|+1} Bel\left(\b
超级会员免费看
订阅专栏 解锁全文
4112

被折叠的 条评论
为什么被折叠?



