博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅
1、项目介绍
技术栈:
python语言、Django框架、Vue前端框架、机器学习预测算法(线性回归模型预测商品的销量)
MySQL数据库、selenium爬虫技术、Echarts可视化、淘宝商品数据
商品销售数据爬取分析可视化系统 大数据 毕业设计 爬虫+机器学习 淘宝销售数据 预测算法模型 大屏
在当前数字经济蓬勃发展的背景下,电子商务行业正经历前所未有的变革。传统商品销售行业面临着诸多挑战,在数据处理和市场分析方面。许多企业依赖于人工统计与经验判断,导致市场反应滞后,决策缺乏科学依据。这不仅影响了资源的合理配置,也降低了企业在激烈竞争中的生存能力。因此,构建高效的数据分析与可视化系统显得尤为重要。随着计算机技术的快速发展,大数据和人工智能的兴起,企业能够借助先进的算法和工具,实现对销售数据的实时分析。本系统基于Python,利用Selenium技术爬取淘宝平台的商品数据,结合机器学习模型线性回归有效预测商品销量,优化库存管理和市场推广策略。数据可视化技术的应用,使得复杂的数据分析结果以直观方式呈现。
本研究设计并实现一个基于Python的淘宝商品数据分析可视化系统。该系统的后端采用Django框架,前端使用Vue.js,数据库方面使用MySQL进行数据存储和管理。系统的主要功能模块包括商品数据可视化大屏、商品总览、数据折线图、邮寄分布图、词云图及价格预测等。
本系统通过整合先进的计算机技术与数据分析方法,为传统商品销售行业提供高效的数据分析与可视化解决方案。通过科学的数据支持,帮助企业提升运营效率、增强市场竞争力,实现可持续发展。
关键词:淘宝商品数据,Django,Python,mysql,可视化
商品销售数据爬取分析可视化预测系统是一个基于Python语言和Django框架开发的应用程序。它通过使用selenium爬虫技术从淘宝网上获取商品的销售数据,并使用MySQL数据库存储这些数据。
系统的前端界面使用了Vue前端框架,可以实现用户与系统的交互操作。用户可以通过系统界面输入要查询的商品信息,并选择相应的时间范围来获取该商品的销售数据。
系统使用机器学习预测算法(线性回归模型)来对商品的销量进行预测。通过对历史销售数据的分析和建模,系统可以根据当前的销售情况预测未来一段时间内的商品销量。
为了更直观地展示数据,系统使用了Echarts可视化库来生成各种图表和图形。用户可以通过系统界面查看商品销售数据的趋势图、柱状图、饼图等,以便更好地分析和理解数据。
总之,商品销售数据爬取分析可视化预测系统能够帮助用户方便地获取商品销售数据、分析趋势,并通过机器学习算法预测商品的销量,从而为用户提供决策参考。
2、项目界面
(1)商品数据可视化大屏
(2)邮寄中国分布图
(3)商品数据详情
(4)商品各类型各省份销售额、销售量数据折线图
(5)词云图分析
(6)机器学习算法预测(线性回归模型预测商品的销量)
(7)后台数据管理
(8)数据爬取页面
3、项目说明
在当前数字经济蓬勃发展的背景下,电子商务行业正经历前所未有的变革。传统商品销售行业面临着诸多挑战,在数据处理和市场分析方面。许多企业依赖于人工统计与经验判断,导致市场反应滞后,决策缺乏科学依据。这不仅影响了资源的合理配置,也降低了企业在激烈竞争中的生存能力。因此,构建高效的数据分析与可视化系统显得尤为重要。随着计算机技术的快速发展,大数据和人工智能的兴起,企业能够借助先进的算法和工具,实现对销售数据的实时分析。本系统基于Python,利用Selenium技术爬取淘宝平台的商品数据,结合机器学习模型线性回归有效预测商品销量,优化库存管理和市场推广策略。数据可视化技术的应用,使得复杂的数据分析结果以直观方式呈现。
本研究设计并实现一个基于Python的淘宝商品数据分析可视化系统。该系统的后端采用Django框架,前端使用Vue.js,数据库方面使用MySQL进行数据存储和管理。系统的主要功能模块包括商品数据可视化大屏、商品总览、数据折线图、邮寄分布图、词云图及价格预测等。
本系统通过整合先进的计算机技术与数据分析方法,为传统商品销售行业提供高效的数据分析与可视化解决方案。通过科学的数据支持,帮助企业提升运营效率、增强市场竞争力,实现可持续发展。
关键词:淘宝商品数据,Django,Python,mysql,可视化
商品销售数据爬取分析可视化预测系统是一个基于Python语言和Django框架开发的应用程序。它通过使用selenium爬虫技术从淘宝网上获取商品的销售数据,并使用MySQL数据库存储这些数据。
系统的前端界面使用了Vue前端框架,可以实现用户与系统的交互操作。用户可以通过系统界面输入要查询的商品信息,并选择相应的时间范围来获取该商品的销售数据。
系统使用机器学习预测算法(线性回归模型)来对商品的销量进行预测。通过对历史销售数据的分析和建模,系统可以根据当前的销售情况预测未来一段时间内的商品销量。
为了更直观地展示数据,系统使用了Echarts可视化库来生成各种图表和图形。用户可以通过系统界面查看商品销售数据的趋势图、柱状图、饼图等,以便更好地分析和理解数据。
总之,商品销售数据爬取分析可视化预测系统能够帮助用户方便地获取商品销售数据、分析趋势,并通过机器学习算法预测商品的销量,从而为用户提供决策参考。
4、核心代码
from django.shortcuts import render
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
# Create your views here.
from .utils import getScreenData
from