手动@小明同学,你咋那么多事呢。
问题:小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数)。没多久,他就得到另一组连续正数和为100的序列:18,19,20,21,22。现在把问题交给你,你能不能也很快的找出所有和为S的连续正数序列? Good Luck!
输出要求:输出所有和为S的连续正数序列。序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序
刚开始是没有思路的,后来一想,这是偏数学的一道题目。首先分析一下,9~16,是8个数,那么其中肯定两个中位数之和为25,因为25*4=100.再看18,19,20,21,22.五个数,中位数为20,20*5=100.所以规律大体就是,序列长度为偶数时,两个中位数之和*序列长度/2=100.序列长度为奇数时,中位数*序列长度为100。接下来思考一下100的几个因子。1,2,5,10,20,25,50,100.通过验证发现,100中再无其他的满足的序列。所以我们可以发现其中的规律就是s的因子中相应的乘积必须一个是奇数,一个是偶数。
大神的思路:
n为奇数时,序列中间的数正好是序列的平均值,所以条件为:(n & 1) == 1 && sum % n == 0;
最后举一个例子,假设输入sum = 100,我们只需遍历n = 13~2的情况(按题意应从大到小遍历),n = 8时,得到序列[9, 10, 11, 12, 13, 14, 15, 16];n = 5时,得到序列[18, 19, 20, 21, 22]。 完整代码:时间复杂度为
import java.util.ArrayList;
public class Solution {
public ArrayList<ArrayList<Integer> > FindContinuousSequence(int sum) {
ArrayList<ArrayList<Integer>> ans = new ArrayList<>();
for (int n = (int) Math.sqrt(2 * sum); n >= 2; n--) {
if ((n & 1) == 1 && sum % n == 0 || (sum % n) * 2 == n) {
ArrayList<Integer> list = new ArrayList<>();
for (int j = 0, k = (sum / n) - (n - 1) / 2; j < n; j++, k++) {
list.add(k);
}
ans.add(list);
}
}
return ans;
}
}