使用WeChat消息创建LangChain聊天加载器

在AI模型的微调或少样本学习中,聊天数据通常扮演着重要的角色。然而,从WeChat导出消息并不那么直截了当。本文将演示如何从WeChat桌面应用复制的消息创建自己的聊天加载器,并将其转换为LangChain兼容的消息格式。

技术背景介绍

WeChat是中国使用最广泛的聊天应用程序之一,但其消息导出功能比较有限。LangChain是一个用于构建强大AI应用程序的框架,支持多种聊天加载器。我们将借鉴LangChain中Discord聊天加载器的设计,通过自定义代码实现WeChat聊天的导入。

核心原理解析

这个方法主要分为以下几个步骤:

  1. 从WeChat桌面应用中选择并复制所需的消息。
  2. 将复制的消息粘贴到本地的.txt文件中。
  3. 创建自定义的WeChat聊天加载器,解析文本文件并生成LangChain格式的消息。

代码实现演示

首先,我们需要创建一个消息转储文件。以下是如何生成一个示例WeChat聊天文件:

%%writefile wechat_chats.txt
女朋友 2023/09/16 2:51 PM
天气有点凉

男朋友 2023/09/16 2:51 PM
珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。

女朋友 2023/09/16 3:06 PM
忙什么呢

男朋友 2023/09/16 3:06 PM
今天只干成了一件像样的事
那就是想你

女朋友 2023/09/16 3:06 PM
[动画表情]

接下来,我们定义一个WeChat聊天加载器:

import logging
import re
from typing import Iterator, List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage

logger = logging.getLogger()

class WeChatChatLoader(chat_loaders.BaseChatLoader):
    def __init__(self, path: str):
        self.path = path
        self._message_line_regex = re.compile(
            r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))"
        )

    def _append_message_to_results(self, results: List, current_sender: str, current_timestamp: str, current_content: List[str]):
        content = "\n".join(current_content).strip()
        if not re.match(r"\[.*\]", content):
            results.append(
                HumanMessage(
                    content=content,
                    additional_kwargs={
                        "sender": current_sender,
                        "events": [{"message_time": current_timestamp}],
                    },
                )
            )
        return results

    def _load_single_chat_session_from_txt(self, file_path: str) -> chat_loaders.ChatSession:
        with open(file_path, "r", encoding="utf-8") as file:
            lines = file.readlines()

        results: List[BaseMessage] = []
        current_sender = None
        current_timestamp = None
        current_content = []
        for line in lines:
            if re.match(self._message_line_regex, line):
                if current_sender and current_content:
                    results = self._append_message_to_results(results, current_sender, current_timestamp, current_content)
                current_sender, current_timestamp = re.match(self._message_line_regex, line).groups()
                current_content = []
            else:
                current_content.append(line.strip())

        if current_sender and current_content:
            results = self._append_message_to_results(results, current_sender, current_timestamp, current_content)

        return chat_loaders.ChatSession(messages=results)

    def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:
        yield self._load_single_chat_session_from_txt(self.path)

# 初始化加载器
loader = WeChatChatLoader(path="./wechat_chats.txt")

然后加载消息并进行转换:

from typing import List
from langchain_community.chat_loaders.utils import map_ai_messages, merge_chat_runs
from langchain_core.chat_sessions import ChatSession

raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
# 将 "男朋友" 发送的信息转换成AI消息
messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender="男朋友"))

# 打印转换后的消息
for message in messages[0]["messages"]:
    print(message)

应用场景分析

这种转换格式适用于以下场景:

  • 微调AI聊天模型:使用真实的聊天数据对模型进行适应性调整。
  • 少样本学习:为模型提供上下文例子,提高其应答质量。
  • 聊天记录分析:进行数据挖掘与情感分析。

实践建议

  • 确保复制的文本格式与正则表达式匹配,避免解析错误。
  • 小心处理个人隐私信息,确保文件和API密钥安全。
  • 定期更新和维护代码库,以适应LangChain的版本迭代。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值