使用Bearly Code Interpreter进行远程代码执行的实战示例
技术背景介绍
在现代软件开发中,代码沙箱环境提供了一种安全的方式来执行潜在不安全的代码片段。Bearly Code Interpreter通过其远程执行功能,为开发者提供了一种在隔离环境中运行代码的方式,这是代码解释器的一个重要应用场景。
核心原理解析
Bearly Code Interpreter允许在一个虚拟化的安全环境中执行Python代码。这使得开发者可以在不影响生产环境的情况下测试和验证代码执行结果。其核心在于将代码片段封装、传输至服务器端,并在沙箱中执行,返回结果供开发者查看。
代码实现演示(重点)
在本节中,我们将展示如何使用Bearly Code Interpreter与LangChain库结合,以实现PDF内容提取和数据查询。
from langchain_community.tools import BearlyInterpreterTool
from langchain.agents import AgentType, initialize_agent
from langchain_openai import ChatOpenAI
import pandas as pd
# 初始化Bearly Interpreter Tool
bearly_tool = BearlyInterpreterTool(api_key="your-api-key")
# 上传文件至沙箱环境
bearly_tool.add_file(
source_path="sample_data/Bristol.pdf", target_path="Bristol.pdf", description=""
)
bearly_tool.add_file(
source_path="sample_data/US_GDP.csv", target_path="US_GDP.csv", description=""
)
# 初始化工具
tools = [bearly_tool.as_tool()]
# 初始化代理
llm = ChatOpenAI(model="gpt-4", temperature=0)
agent = initialize_agent(
tools,
llm,
agent=AgentType.OPENAI_FUNCTIONS,
verbose=True,
handle_parsing_errors=True,
)
# 提取PDF内容
result_pdf = agent.run("What is the text on page 3 of the pdf?")
print("PDF内容:", result_pdf)
# 查询US GDP数据
result_gdp = agent.run("What was the US GDP in 2019?")
print("2019年美国GDP:", result_gdp)
# 计算预计GDP
result_gdp_future = agent.run("What would the GDP be in 2030 if the latest GDP number grew by 50%?")
print("2030年预计GDP:", result_gdp_future)
#生成GDP增长曲线图表
agent.run("Create a nice and labeled chart of the GDP growth over time")
应用场景分析
这种远程代码执行的方式特别适用于以下场景:
- 安全性:在不安全或未经验证的代码需要执行时,使用代码沙箱可减少风险。
- 隔离环境:适用于需要在具体环境中测试的代码片段。
- 云端计算:当本地计算能力受限时,利用云端的强大计算资源。
实践建议
- API密钥保护:务必妥善保管API密钥,避免泄露。
- 代码优化:在发送至沙箱执行前,尽量优化代码以提高执行效率。
- 结果验证:对返回结果进行验证,以确保准确性。
如果遇到问题欢迎在评论区交流。
—END—