Django如何调用机器学习模型进行预测

本文介绍了如何在Django项目中使用Scikit-Learn训练的线性回归模型进行预测,并通过RESTfulAPI实现模型调用和预测功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Django是一个流行的Python Web框架,它可以很方便地集成机器学习模型,进行预测和推理。我将介绍如何在Django项目中调用训练好的机器学习模型,并实现一个预测接口。

准备工作

首先我们需要一个训练好的机器学习模型。这里我们使用Scikit-Learn训练一个简单的线性回归模型作为示例。

import numpy as np
from sklearn.linear_model import LinearRegression

# 生成训练数据
X = np.array([[1], [2], [3], [4], [5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qa浪涛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值