问题描述
哥德巴赫猜想认为:不小于4的偶数都可以表示为两个素数的和。
你不需要去证明这个定理,但可以通过计算机对有限数量的偶数进行分解,验证是否可行。
实际上,一般一个偶数会有多种不同的分解方案,我们关心包含较小素数的那个方案。
对于给定数值范围,我们想知道这些包含较小素数方案中最大的素数是多少。
比如,100以内,这个数是19,它由98的分解贡献。
你需要求的是10000以内,这个数是多少?
思路分析及代码实现
可以先求出所求范围内的所有素数列表
然后遍历所有范围内的偶数,尝试将偶数分解为两个都在素数列表中的值,取分解得到的第一组值中的最小值放入res中,然后break分解下一个偶数,
遍历完成后求res最大值即可
def su(n):
num = []
for i in range(2,n):
for j in range(2, i):
if i%j==0:
break
else:
num.append(i)
return num
num = su(10000)
res = []
for i in range(4,10001,2):
for j in num:
if i-j in num:
res.append(min(j, i-j))
break
print(max(res))
答案:173