【思特奇杯·云上蓝桥-算法集训营】第1周 哥德巴赫分解

问题描述

哥德巴赫猜想认为:不小于4的偶数都可以表示为两个素数的和。
你不需要去证明这个定理,但可以通过计算机对有限数量的偶数进行分解,验证是否可行。
实际上,一般一个偶数会有多种不同的分解方案,我们关心包含较小素数的那个方案。
对于给定数值范围,我们想知道这些包含较小素数方案中最大的素数是多少。
比如,100以内,这个数是19,它由98的分解贡献。
你需要求的是10000以内,这个数是多少?

思路分析及代码实现

可以先求出所求范围内的所有素数列表
然后遍历所有范围内的偶数,尝试将偶数分解为两个都在素数列表中的值,取分解得到的第一组值中的最小值放入res中,然后break分解下一个偶数,
遍历完成后求res最大值即可

def su(n):
    num = []
    for i in range(2,n):
        for j in range(2, i):
            if i%j==0:
                break
        else:
            num.append(i)
    return num
num = su(10000)
res = []
for i in range(4,10001,2):
    for j in num:
        if i-j in num:
            res.append(min(j, i-j))
            break
print(max(res))

答案:173

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会写代码的嘤嘤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值