【线性代数笔记】正交矩阵的性质

定义 n n n阶矩阵 A A A满足 A A T = A T A = I AA^T=A^TA=I AAT=ATA=I,则称 A A A为正交矩阵。


定理1 A A A B B B是同阶正交矩阵,则:
(1) det ⁡ ( A ) = ± 1 \det(A)=\pm1 det(A)=±1
(2) A T , A − 1 , A ∗ A^T,A^{-1},A^* AT,A1,A均为正交矩阵;
(3) A B AB AB为正交矩阵。

定理2 实方阵 A A A为正交矩阵 ⟺ \Longleftrightarrow A A A的列/行向量组为标准正交向量组。

证明提要:将 A A A按列分块,考察 A T A = I A^TA=I ATA=I即可。

定理3(正交变换的保范性) A A A为正交矩阵,则 ∀ x 1 , x 2 ∈ R n \forall \bm x_1, \bm x_2\in R^n x1,x2Rn,有:
(1) ⟨ A x 1 , A x 2 ⟩ = ⟨ x 1 , x 2 ⟩ \langle A\bm x_1,A\bm x_2\rangle=\langle\bm x_1,\bm x_2\rangle Ax1,Ax2=x1,x2
(2) ∥ A x 1 ∥ = ∥ x 1 ∥ \|A\bm x_1\|=\|\bm x_1\| Ax1=x1

证明
(1) ⟨ A x 1 , A x 2 ⟩ = ( A x 1 ) T ( A x 2 ) = x 1 T A T A x 2 = x 1 T x 2 = ⟨ x 1 , x 2 ⟩ \langle A\bm x_1,A\bm x_2\rangle=(A\bm x_1)^T(A\bm x_2)=\bm x_1^TA^TA\bm x_2=\bm x_1^T\bm x_2=\langle\bm x_1,\bm x_2\rangle Ax1,Ax2=(Ax1)T(Ax2)=x1TATAx2=x1Tx2=x1,x2
(2) 由(1)及 ∥ α ∥ = ⟨ α , α ⟩ \|\bm \alpha\|=\langle\bm\alpha,\bm\alpha\rangle α=α,α即得。

定理4 A A A为正交矩阵,则 A A A的特征值只能为 ± 1 \pm1 ±1

证明:设 A A A由特征值 λ \lambda λ,对应的特征向量为 α \bm\alpha α,则 A α = λ α A\bm\alpha=\lambda\bm\alpha Aα=λα。根据正交矩阵的定义, A T A = I A^TA=I ATA=I,即 α T A T A α = α T α \bm\alpha^TA^TA\bm\alpha=\bm\alpha^T\bm\alpha αTATAα=αTα,或 ( A α ) T ( A α ) = α T α (A\bm\alpha)^T(A\bm\alpha)=\bm\alpha^T\bm\alpha (Aα)T(Aα)=αTα,代入 A α = λ α A\bm\alpha=\lambda\bm\alpha Aα=λα ( λ α ) T ( λ α ) = α T α (\lambda\bm\alpha)^T(\lambda\bm\alpha)=\bm\alpha^T\bm\alpha (λα)T(λα)=αTα,即 λ 2 α T α = α T α \lambda^2\bm\alpha^T\bm\alpha=\bm\alpha^T\bm\alpha λ2αTα=αTα,而 α T α \bm\alpha^T\bm\alpha αTα是非零数,故 λ 2 = 1 \lambda^2=1 λ2=1,即 λ = ± 1 \lambda=\pm1 λ=±1


定义 实对称矩阵是指元素为实数的对称矩阵。

定理5 A A A n n n阶实对称矩阵,则一定存在 n n n正交矩阵 P P P使得 P − 1 A P = diag ( λ 1 , λ 2 , … , λ n ) 。 P^{-1}AP=\text{diag}(\lambda_1,\lambda_2,\dots,\lambda_n)。 P1AP=diag(λ1,λ2,,λn)
证明过于繁琐,从略。
该定理表明:实对称矩阵一定可以相似对角化,并且相似变换矩阵为正交矩阵。结合相似变换矩阵是特征向量组成的事实,我们知道实对称矩阵存在一组正交的特征向量


同时,正交矩阵也是沟通合同和相似的桥梁。对于一个二次型的矩阵 A A A来说,由于它是实对称矩阵,故 ∃ \exists 正交矩阵 C C C使得 C − 1 A C = Λ C^{-1}AC=\Lambda C1AC=Λ,其中 Λ \Lambda Λ是对角矩阵。同时 C − 1 = C T C^{-1}=C^T C1=CT,故 C T A C = Λ C^TAC=\Lambda CTAC=Λ,因此 A A A也与 Λ \Lambda Λ合同。对于非实对称矩阵则不一定具有这样的性质。

  • 16
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值