定义 设 n n n阶矩阵 A A A满足 A A T = A T A = I AA^T=A^TA=I AAT=ATA=I,则称 A A A为正交矩阵。
定理1 设
A
A
A,
B
B
B是同阶正交矩阵,则:
(1)
det
(
A
)
=
±
1
\det(A)=\pm1
det(A)=±1;
(2)
A
T
,
A
−
1
,
A
∗
A^T,A^{-1},A^*
AT,A−1,A∗均为正交矩阵;
(3)
A
B
AB
AB为正交矩阵。
定理2 实方阵 A A A为正交矩阵 ⟺ \Longleftrightarrow ⟺ A A A的列/行向量组为标准正交向量组。
证明提要:将 A A A按列分块,考察 A T A = I A^TA=I ATA=I即可。
定理3(正交变换的保范性) 设
A
A
A为正交矩阵,则
∀
x
1
,
x
2
∈
R
n
\forall \bm x_1, \bm x_2\in R^n
∀x1,x2∈Rn,有:
(1)
⟨
A
x
1
,
A
x
2
⟩
=
⟨
x
1
,
x
2
⟩
\langle A\bm x_1,A\bm x_2\rangle=\langle\bm x_1,\bm x_2\rangle
⟨Ax1,Ax2⟩=⟨x1,x2⟩;
(2)
∥
A
x
1
∥
=
∥
x
1
∥
\|A\bm x_1\|=\|\bm x_1\|
∥Ax1∥=∥x1∥。
证明:
(1) ⟨ A x 1 , A x 2 ⟩ = ( A x 1 ) T ( A x 2 ) = x 1 T A T A x 2 = x 1 T x 2 = ⟨ x 1 , x 2 ⟩ \langle A\bm x_1,A\bm x_2\rangle=(A\bm x_1)^T(A\bm x_2)=\bm x_1^TA^TA\bm x_2=\bm x_1^T\bm x_2=\langle\bm x_1,\bm x_2\rangle ⟨Ax1,Ax2⟩=(Ax1)T(Ax2)=x1TATAx2=x1Tx2=⟨x1,x2⟩。
(2) 由(1)及 ∥ α ∥ = ⟨ α , α ⟩ \|\bm \alpha\|=\langle\bm\alpha,\bm\alpha\rangle ∥α∥=⟨α,α⟩即得。
定理4 设 A A A为正交矩阵,则 A A A的特征值只能为 ± 1 \pm1 ±1。
证明:设 A A A由特征值 λ \lambda λ,对应的特征向量为 α \bm\alpha α,则 A α = λ α A\bm\alpha=\lambda\bm\alpha Aα=λα。根据正交矩阵的定义, A T A = I A^TA=I ATA=I,即 α T A T A α = α T α \bm\alpha^TA^TA\bm\alpha=\bm\alpha^T\bm\alpha αTATAα=αTα,或 ( A α ) T ( A α ) = α T α (A\bm\alpha)^T(A\bm\alpha)=\bm\alpha^T\bm\alpha (Aα)T(Aα)=αTα,代入 A α = λ α A\bm\alpha=\lambda\bm\alpha Aα=λα得 ( λ α ) T ( λ α ) = α T α (\lambda\bm\alpha)^T(\lambda\bm\alpha)=\bm\alpha^T\bm\alpha (λα)T(λα)=αTα,即 λ 2 α T α = α T α \lambda^2\bm\alpha^T\bm\alpha=\bm\alpha^T\bm\alpha λ2αTα=αTα,而 α T α \bm\alpha^T\bm\alpha αTα是非零数,故 λ 2 = 1 \lambda^2=1 λ2=1,即 λ = ± 1 \lambda=\pm1 λ=±1。
定义 实对称矩阵是指元素为实数的对称矩阵。
定理5 设
A
A
A为
n
n
n阶实对称矩阵,则一定存在
n
n
n阶正交矩阵
P
P
P使得
P
−
1
A
P
=
diag
(
λ
1
,
λ
2
,
…
,
λ
n
)
。
P^{-1}AP=\text{diag}(\lambda_1,\lambda_2,\dots,\lambda_n)。
P−1AP=diag(λ1,λ2,…,λn)。
证明过于繁琐,从略。
该定理表明:实对称矩阵一定可以相似对角化,并且相似变换矩阵为正交矩阵。结合相似变换矩阵是特征向量组成的事实,我们知道实对称矩阵存在一组正交的特征向量。
同时,正交矩阵也是沟通合同和相似的桥梁。对于一个二次型的矩阵 A A A来说,由于它是实对称矩阵,故 ∃ \exists ∃正交矩阵 C C C使得 C − 1 A C = Λ C^{-1}AC=\Lambda C−1AC=Λ,其中 Λ \Lambda Λ是对角矩阵。同时 C − 1 = C T C^{-1}=C^T C−1=CT,故 C T A C = Λ C^TAC=\Lambda CTAC=Λ,因此 A A A也与 Λ \Lambda Λ合同。对于非实对称矩阵则不一定具有这样的性质。