数据分析到底做什么

本文探讨了在不同规模的公司中,数据分析的工作职责、同事素质、技能要求及数据地位的差异。小公司中,数据分析师可能需要处理各种任务,而大公司则职责更加细化。同事的学历和年龄差异在不同公司中显著,沟通和合作方式各异。技能要求从小公司的基础工具到大公司的专业深度各有侧重。数据分析在公司的地位可从至高无上到仅为业务服务,影响着分析师的角色和影响力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.工作职责:
从事数据分析4年半了,进过大厂也混过不入流的公司,两者差别不可谓不大
小公司:
数据分析理应解决所有跟数据相关的工作,大到公司年度计划年度预算,小到为什么某个业务环境某个数字上升了1%的原因。更别说其中的什么商户生命周期,用户画像,业务诊断,基础excel培训,GMV预估等一系列或大或小的工作。工资这个东西不好说,跟做的工作难度工作量都没什么关系,只跟两点有关系,一个是什么样的公司,一个就是领导是否提携,话说任何没有特别不可替代技能的岗位都是这样,CEO也是这么上来的。
说完小公司,说一下中等公司吧:
中等公司来说,一个人不会承担那么多的工作职责,就好比一个小公司做电商和一个大公司做电商,总的来说能做的事情其实是差不了多少的。所以人一旦多了之后,大家分到的职责就会明显下降,中等公司做好自己组负责的项目就可以了,比如原来的商户和用户肯定要分出来,财务就更别说了,基本就是以业务诊断为主。有时候还会兼任一下数据运营,跟产品做一些配合。工作职责下降是最明显的表现。
再来说一下大公司:
大公司的话,人员职责分得更细了,比如业务诊断也会再分开,什么KA也要分出来,很多时候明明能用一套分析逻辑的非要分一下。由于人员多,就需要自己去发掘一些问题,基本也是鸡蛋里挑骨头,因为不是只有自己的部门人多,其他部门也多。
2.工作的同事
小公司:
小公司基本就一两个数据分析,同事基本都是些大专毕业生,除了业务基本只有财务人事行政市场和领导。大家基础素质不会特别好,不是说大专的人比较笨,接触下来,他们只是不喜欢上学而已。跟他们解释其实还是比较容易,因为对于业务而言只要一个标准,至于标准合理不合理,如果不是特别不合理,就这样也无妨。而且大专生基本都会更年轻,没有太执拗的价值观,相对而言更加单纯(单纯并不是一个褒义词,中义词)。
中型公司:
中等公司同事基本都是本科毕业了,这种公司基本也都在大城市了,由于已经有了很多部门概念,有人的地方就有江湖。部门之间打交道不是甩锅现场就是大型PK现场。人员素质也就那样吧,特别机灵这种东西怎么说呢,就跟特别好看一样,百里挑一。打交道不是特别顺利,因为他们总要问一句为什么,但是倒不关心除他们部门之外的事,说实话就是了解下跟他们有什么关系。但是打好关系,基本在公司都能混得很开了。大家都是基于职责+人情。
大型公司:
尤其这几年,互联网公司也开始任人唯文凭了(其他老行业早就是这样了)。随便一个被大家痛骂傻逼的同事都可能是985211毕业,甚至可能是硕士。平均年纪当然是要比小公司大很多,大家想法当然也多很多。毕竟我相信,原来那群大专生到了这个年纪,想问题也会复杂起来。沟通特别不顺利,产品干嘛要给你排在前面,技术有没有更要紧的东西只有技术自己知道,整个链路也没有谁说了算。业务干嘛听你的,数据分析的大领导可能还没有业务小领导职位高。大家处于一种微妙的平衡,到最后基本都是大老板说了算,哪个放前面哪个放后面。部门之间明争暗斗特别厉害。
总结一下:大中小公司的同事唯一区别就是学历和学历背后导致的年龄产生的原因。你要是说硕士比大专生强,肯定的,硕士比大专生最少大了3岁以上。专业能力方面,鸡毛能力,很多硕士都是莫名其妙的专业毕业,对工作有帮助吗,肯定没有,用户运营负责人材料学,商户运营负责人电力学,很正常。我是从小地方上来的,我感觉我一个人吊打整个大公司的运营中心,也很正常。但是让我去做运营总监,也不行,大公司讲究的是掌握平衡的能力。
3.技能要求方面
小公司:
需要什么要什么,EXCEL,PPT是基础,其他可视化的tableau,POWERBI,能让领导的PPT更好看一点,也可以掌握一下,SPSS,PYTHON,如果是自己做分析可以掌握一下,让自己有底一点,但是总归是不能放在台上说的东西。最重要的还是逻辑能力,别被人一下子问傻逼了。
中公司:
这类公司基本产品能力很弱,很多时候都没有数据产品,SQL是基本工具,要什么自己取去吧。数据量不是特别大,数据字段也不会特别多,主要业务线就没那么多啊。其他方面,可视化要求更高了,公司基本会购买或贵或便宜的BI产品,虽然很多时候用的一塌糊涂,但总归你可以直接做了,不需要做完再截图到PPT了。分析还是别用太多的数学原理的东西,相关性可以一用,但是还涉及P值的,拟合优度什么的,说实话用不上。
大公司:
大公司产品线特别多,数据特别杂,因为他一开始也不是大公司,数据底层基本一塌糊涂,重构实在太贵太耗时太复杂了。数据一团乱麻,一个数据在不同的表就是不同口径,所以基本会遇到两种情况,虽然数据底层狗屎一坨,但是有专门的数据产品部门都给你做成产品了,提的需求也能及时完成,那就没什么问题。但是有的公司乱就这么乱着,产品也没跟上(主要开发没那么多),就只能自己取数了,SQL成了必不可少的工具。可视化倒是完全没有要求了,因为公司会自己做数据产品。还有肚子里的墨水也尽可以掏出来了,管别人懂不懂,反正别人也会不懂装懂。但是要领导同意。
4.数据地位
我经历的公司其实不多,也就5个公司,可能没有太大说服力。仅说说实际存在的几种情况吧。
第一种:至高无上
标准制定,我说了算,干嘛要跟业务讨论这么多,预算我控制,激励补贴我说了算,基本上这样就已经把业务整个命脉拿在手里,基本上就是公司里横着走了。
第二种:有商有量
跟其他部门都是平行关系,出任何标准报告都需要跟别人商量一下,征求一下别人的意见。但总归汇报人是大领导,所以不至于太窝火。
第三种:为业务部门服务
我劝大家这样的数据部门千万不要去,去了就是当孙子,给一群不懂分析的人做分析。想想就知道多酸爽。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值