一汽丰田RAV4电路图2012至2013

本文详细介绍了2012至2013款一汽丰田RAV4的各种电路图,包括整车电路图、系统电路图及线束分布等,为维修保养提供全面的技术支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一汽丰田RAV4电路图2012至2013 一汽丰田-RAV4-线路图-2012-2013-原件位置 1——原件位置 1号CAN接线连接器 1号CAN接线连接器内部电路 2号CAN接线连接器 2号CAN接线连接器内部电路 3号CAN接线连接器(左侧围板轮罩板) 3号CAN接线连接器内部电路 4号继电器盒 4号继电器盒内部电路 EngineRoomRAssemblyandEngineRoomJAssemblyInnerCircuit 仪表板 仪表板接线盒总成 仪表板接线盒总成内部电路 发动机室 发动机室2号继电器盒总成内部电路 右前挡泥板 左前挡泥板 车身 一汽丰田-RAV4-线路图-2012-2013-整车电路图 4——整车电路图 AS(不带VSC) AS(带VSC),下坡辅助控制,上坡起步辅助控制,TRC,VSC DLC3 EPS SRS 丰田驻车辅助传感器系统 倒车灯 停机系统(不带智能上车和起动系统) 充电系统 冷却风扇 刹车灯 前刮水器和清洗器 前照灯 前照灯光束高度控制(手动) 前照灯光束高度控制(自动) 发动机控制系统(5AR_FE) 发动机控制系统(6ZR_FE) 后刮水器和清洗器 后视镜加热器后窗除雾器自动防眩目EC后视镜 四轮驱动 多路通信系统(CAN) 座椅加热器 手动空调 换档锁止点烟器电源插座喇叭 滑动天窗 点火系统 电动座椅 电动背门 电动车窗 电源 盲区监视系统 组合仪表 背门开启器(带智能上车和起动系统),停机系统(带智能上车和起动系统),智能上车和起动系统-起动系统(带智能上车和起动系统)-转向锁止(带智能上车和起动系统)-遥控门锁控制(带智能上车和起动系统) 自动空调 起动系统(不带智能上车和起动系统) 车道偏离警报 转向信号和危险警告灯 轮胎压力警告系统 遥控后视镜 音响系统、导航系统、倒车监视系统、后视野监视系统 一汽丰田-RAV4-线路图-2012-2013-系统电路图 3——系统电路图 AS(不带VSC) AS(带VSC)-下坡辅助控制-上坡起步辅助控制-TRC-VSC CVT和换档指示灯、巡航控制(6ZR_FE)、发动机控制(6ZR_FE) DLC3 EPS SRS 丰田驻车辅助传感器系统 倒车灯 停机系统(不带智能上车和起动系统) 充电 冷却风扇 刹车灯 前刮水器和清洗器 前照灯 前照灯光束高度控制(手动) 前照灯光束高度控制(自动) 前照灯清洗器 前雾灯 后刮水器和清洗器 后视镜加热器、后窗除雾器 后雾灯 喇叭 四轮驱动 多路通信系统(CAN) 巡航控制(5AR_FE)、ECT和AT指示灯、发动机控制(5AR_FE) 座椅加热器 座椅安全带警告 手动空调 换档锁止 搭铁点 时钟 滑动天窗 点火 点烟器 照明灯、尾灯 电动座椅 电动背门 电动车窗 电源 电源插座 盲区监视系统 组合仪表 背门开启器(不带智能上车和起动系统) 背门开启器(带智能上车和起动系统)、停机系统(带智能上车和起动系统)、智能上车和起动系统、起动(带智能上车和起动系统)、转向锁止(带智能上车和起动系统)、遥控门锁控制(带智能上车和起动系统) 自动灯光控制-车灯自动熄灭系统-车灯提醒 自动空调 自动防眩目EC后视镜 起动系统(不带智能上车和起动系统) 车内照明灯 车道偏离警报 转向信号和危险警告灯 轮胎压力警告系统 遥控后视镜 遥控门锁控制(不带智能上车和起动系统) 钥匙提醒(不带智能上车和起动系统) 门锁控制 音响系统-倒车监视系统-导航系统-后视野监视系统 一汽丰田-RAV4-线路图-2012-2013-线束 2——线束 仪表板内搭铁点 仪表板内线束 仪表板内零件位置 发动机室内搭铁点5AR 发动机室内搭铁点6ZR 发动机室内线束5AR 发动机室内零件位置5AR 发动机室内零件位置6ZR 天线 座椅内零件位置 线束和发动机室内线束6ZR 线束和座椅内线束 车身内搭铁点 车身内线束 车身内零件位置
本项目聚焦于利用Tensorflow框架搭建完整的卷积神经网络(CNN)以实现文本分类任务。文本分类是自然语言处理的关键应用,目的是将文本自动归类到预定义的类别中。项目涵盖从数据预处理到模型训练、评估及应用的全流程。 README.md文件详细阐述了项目概览、安装步骤、运行指南和注意事项,包括环境搭建、代码运行说明以及项目目标和预期结果的介绍。 train.py是模型训练的核心脚本。在Tensorflow中,首先定义模型结构,涵盖CNN的卷积层、池化层和全连接层。接着,加载数据并将其转换为适合模型输入的格式,如词嵌入。之后,设置损失函数(如交叉熵)和优化器(如Adam),并配置训练循环,包括批次大小和训练步数等。训练过程中,模型通过调整权重来最小化损失函数。 text_cnn.py文件包含CNN模型的具体实现细节,涉及卷积层、池化层的构建以及与全连接层的结合,形成完整模型。此外,还可能包含模型初始化、编译(设定损失函数和评估指标)及模型保存功能。 eval.py是用于模型评估的脚本,主要在验证集或测试集上运行模型,计算性能指标,如准确率、精确率、召回率和F1分数,以评估模型在未见过的数据上的表现。 data_helpers.py负责数据预处理,包括分词、构建词汇表、将文本转换为词向量(如使用预训练的Word2Vec或GloVe向量),以及数据划分(训练集、验证集和测试集)。该文件还可能包含数据批处理功能,以提高模型训练效率。 data文件夹存储了用于训练和评估的影评数据集,包含正负面评论的标注数据。数据预处理对模型性能至关重要。本项目提供了一个完整的端到端示例,是深度学习文本分类初学者的优质学习资源。通过阅读代码,可掌握利用Tensorflow构建CNN处理文本数据的方法,以及模型管理和评估技巧。同时,项目展示了如何使用大型文本数据集进行训练,这对提升模型泛化能力极为重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值