CF1204E Natasha, Sasha and the Prefix Sums
题意
给出n,m
,
n
个1
和m
个-1
组成(comb[n+m][n]
个)数列
对所有数列的最大前缀和求和
最大前缀和最小是0
思路
动态规划
- 状态:
dp[n][m]
表示由n
个1
和m
个-1
组成数列的前缀和总和 - 状态转移方程:
d
p
[
i
]
[
j
]
=
(
d
p
[
i
−
1
]
[
j
]
+
c
o
m
b
[
i
+
j
−
1
]
[
j
]
)
+
(
d
p
[
i
]
[
j
−
1
]
+
(
c
o
m
b
[
i
+
j
−
1
]
[
i
]
−
前
缀
和
为
0
的
)
)
dp[i][j]=(dp[i-1][j]+comb[i+j-1][j])+(dp[i][j-1]+(comb[i+j-1][i]-前缀和为0的))
dp[i][j]=(dp[i−1][j]+comb[i+j−1][j])+(dp[i][j−1]+(comb[i+j−1][i]−前缀和为0的))
i
个1
和j
个-1
可以由i-1
个1
和j
个-1
在前端加个1
得到,显然前端加一使得每个数列前缀和加了1
i
个1
和j
个-1
可以由i
个1
和j-1
个-1
在前端加个-1
得到,显然前端减一使得每个数列前缀和减1
,除了最大前缀和为0
的
最大前缀和为0
的个数
- 状态:
dp[n][m]
表示n
个1
和m
个-1
组成数列的最大前缀和为0的个数 - 状态转移方程:
d
p
[
i
]
[
j
]
=
d
p
[
i
−
1
]
[
j
]
+
d
p
[
i
]
[
j
−
1
]
(
i
≤
j
)
dp[i][j]=dp[i-1][j]+dp[i][j-1](i\leq j)
dp[i][j]=dp[i−1][j]+dp[i][j−1](i≤j)
- d p [ 0 ] [ i ] = 1 ( 1 ≤ i ) dp[0][i]=1(1\leq i) dp[0][i]=1(1≤i)
- d p [ i ] [ j ] = 0 ( i > j ) dp[i][j]=0(i>j) dp[i][j]=0(i>j)
i
个1
和j
个-1
可以由i-1
个1
和j
个-1
在后端加个1
得到,由于 i ≤ j i\leq j i≤j,即使加1
最大前缀和为0
i
个1
和j
个-1
可以由i
个1
和j-1
个-1
在后端加个-1
得到,显然后端减一最大前缀和为0
最大前缀和为0
的个数
转化为网格和组合数问题
-
相当于
(0,0)
到(n,m)
的路径不经过y=x
,即路径一直保持在矩阵上三角(包括对角线) -
反向思考:所有路径
comb[n+m][n]
减去不合法路径- 若存在穿过
y=x
的路径,将第一个犯规的路径关于y=x
对称,剩余路径按序衔接 - 那么
y-1,x+1
终点改为(n+1,m-1)
,方案数为comb[n+m][m-1]
- 若存在穿过
-
i
个1
和j
个-1
中最大前缀和为0
的情况为comb[i+j][j]-comb[i+j][j-1]
代码
预处理组合数和最大前缀和为0的个数
void init() {
for (int i = 0; i < maxn; i++) comb[i][0] = comb[i][i] = 1;
for (int i = 2; i < maxn; i++) for (int j = 1; j < i; j++)
comb[i][j] = (comb[i - 1][j - 1] + comb[i - 1][j]) % mod;
for (int i = 1; i < maxn / 2; i++) p[0][i] = 1;
for (int i = 1; i < maxn / 2; i++) for (int j = i; j < maxn / 2; j++)
p[i][j] = (p[i - 1][j] + p[i][j - 1]) % mod;
}
DP
for (int i = 1; i <= n; i++) dp[i][0] = i;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
dp[i][j] = max(dp[i][j],
((dp[i - 1][j] + comb[i + j - 1][j]) % mod +
(dp[i][j - 1] - (comb[i + j - 1][i] - (i <= j - 1 ? (comb[i + j - 1][i] - comb[i + j - 1][i - 1]) : 0)))% mod) % mod + mod) % mod);
//((dp[i][j - 1] - comb[i + j - 1][i] + p[i][j - 1]) % mod + mod) % mod) % mod);
AC
#pragma warning (disable:4996)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 4005;
const int mod = 998244853;
int comb[maxn][maxn], p[maxn >> 1][maxn >> 1];
void init() {
for (int i = 0; i < maxn; i++) comb[i][0] = comb[i][i] = 1;
for (int i = 2; i < maxn; i++) for (int j = 1; j < i; j++)
comb[i][j] = (comb[i - 1][j - 1] + comb[i - 1][j]) % mod;
for (int i = 1; i < maxn / 2; i++) p[0][i] = 1;
for (int i = 1; i < maxn / 2; i++) for (int j = i; j < maxn / 2; j++)
p[i][j] = (p[i - 1][j] + p[i][j - 1]) % mod;
}
int dp[maxn >> 1][maxn >> 1];
int main() {
init();
int n, m; scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) dp[i][0] = i;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
dp[i][j] = max(dp[i][j],
((dp[i - 1][j] + comb[i + j - 1][j]) % mod +
((dp[i][j - 1] - comb[i + j - 1][i] + p[i][j - 1]) % mod + mod) % mod) % mod);
printf("%d\n", dp[n][m]);
}