矩形排样问题 遗传算法解决方案

本文介绍使用遗传算法解决矩形排版问题的方法。通过合理的编码规则、初始种群选择、贪心策略、适应度函数及变异规则,实现了矩形的有效排列。适用于工业生产和布局优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在实习中,遇到了一个实际问题。客户要将若干大小不一的小矩形,排到大矩形上,而且还要求可以设置小矩形之间的间距,和大矩形的margin值,便于裁切。

排样问题是一个经典的NP问题,有很多解决方案。神经网络、遗传、蚁群、模拟退火等等算法都可以解决这个问题。对于一些行业的工业生产,很多生产数据并没有测试数据那般刁钻,所以这些算法基本都能满足生产的需要。


在这里,我主要参考了一篇郑州大学的研究生毕业论文,自己又稍加了修改,用遗传算法解决了这个问题。


遗传算法的本质其实就是把问题简化为一个个序列,根据一定规律随机生成后,拿这个编码序列贪心的得出解,然后不断的迭代,优胜劣汰,向最优解靠拢。

我认为遗传算法有几个关键之处:编码规则、初始种群的选取、贪心方式、适应度函数的选择、变异规则。

1.好的编码规则能便于程序的实现,同时也决定了程序的贪心结构,在这里,我的编码是1-n的阿拉伯数字,代表放入的矩形的编号,从左到右是放入的顺序。如果矩形需要旋转,则为负数。

2.初始种群的选取,给矩形按照权值排序,权值=0.9*矩形面积+0.1*矩形长宽比,大的先放,小的后放,然后随机其正负值,生成初始种群,好的初始种群能很快就找到最优解。

3.我的贪心解决方案就是最低水平线算法,从左到右,从下到上,不断的寻找能放入的点。每次放入一个新点后,把未来的矩形可能的存在的点加入一个有序的序列中,后面的待排矩形就在这个序列里寻找可以放的点。

4.适应度函数,两个个体好坏的决定因素,在这里,我设置了3个决定因素,首先是放入的矩形面积占待放入的矩形面积的百分比,第二个是当前排入的矩形的最大高度,第三个是排入矩形的整齐程度(高的种类个数)。我还有一些新想法,比如比较新图形的重心,重心越靠左下约好,能避免一些相同适应值下的非最优解。

5.变异规则,这里用了4种变异方案,交叉、单点。。。。。。不详述了。


这里我把算法封装到了类里


评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值