算法设计与分析基础-8.4、背包问题和记忆功能

时间效率空间效率都是O(nW),n是物品个数,W是背包重量

采用自顶向下,它只对必要的子问题求解并且只解一次。


import java.util.ArrayList;

public class MFKnapsack {
	private int n;
	private int W;
	private int[] Weights;
	private int[] Values;
	private int[][] V;
	public ArrayList<Integer> list;

	public MFKnapsack(int n, int[] weights, int[] values, int w) {
		super();
		this.n = n;
		this.Weights = weights;
		this.Values = values;
		this.W = w;
		this.list = new ArrayList<Integer>();
		V = new int[n + 1][w + 1];
		for (int i = 0; i < n + 1; i++)
			for (int j = 0; j < w + 1; j++) {
				if (i == 0 || j == 0)
					V[i][j] = 0;
				else
					V[i][j] = -1;
			}
	}

	// 注意和算法描述时数组边界不同
	public int mfknapsack(int i, int j) {
		int value = 0;
		if (V[i][j] < 0) {
			if (j < Weights[i - 1]) {
				value = mfknapsack(i - 1, j);
			} else {
				int v1 = mfknapsack(i - 1, j);
				int v2 = Values[i - 1] + mfknapsack(i - 1, j - Weights[i - 1]);
				value = (v1 > v2) ? v1 : v2;
			}
			V[i][j] = value;
		}
		return V[i][j];
	}

	public void showV() {
		for (int i = 0; i < this.n + 1; i++) {
			for (int j = 0; j < this.W + 1; j++)
				System.out.print(V[i][j] + "  ");
			System.out.println();
		}
	}

	public void findnapsack(int i, int j) {
		if (i != 0) {
			if (V[i][j] != V[i - 1][j])
			{
				list.add(i);
			    findnapsack(i - 1, j - Weights[i - 1]);
			}
			else {
				findnapsack(i-1, j);
			}
		}
	}

	public static void main(String[] argv) {
		int n = 4;
		int w = 5;
		int[] values = new int[] { 12, 10, 20, 15 };
		int[] weights = new int[] { 2, 1, 3, 2 };
		MFKnapsack mfk = new MFKnapsack(n, weights, values, w);
		System.out.println(mfk.mfknapsack(n, w));
		mfk.showV();
		mfk.findnapsack(n, w);
		System.out.println(mfk.list);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值