lintcode92背包问题 空间复杂度O(m)

本文介绍了如何使用动态规划解决背包问题,给出了一种在O(n x m)时间复杂度和O(m)空间复杂度的解决方案。讨论了子问题的设计和状态转移方程,并提供了代码实现,通过二维数组优化空间使用。
摘要由CSDN通过智能技术生成
题目

在n个物品中挑选若干物品装入背包,最多能装多满?假设背包的大小为m,每个物品的大小为A[i]

  • 样例
    Example 1:
    Input: [3,4,8,5], backpack size=10
    Output: 9
    Example 2:
    Input: [2,3,5,7], backpack size=12
    Output: 12
  • 挑战
    O(n x m) time and O(m) memory.
    O(n x m) memory is also acceptable if you do not know how to optimize memory.
分析
  1. 背包问题是经典的动态规划问题;动态规划是将一个大的最优问题分解为众多子最优问题。
  2. 设计子问题应趋向于简单。一维角度可以从背包容量进行分解或者从物品的数目进行分解。再次深入分析一下相邻两个子问题之间的关系:对于有n个物品的最优解dp[n],考虑到前[n-1]个物体中放入的物品可能占据多种不同的背包容量,导致第n个物体有能放入和不能放入的不确定情况,即,利用一维问题空间无法解决该最优化问题。
  3. 通过2可知,子问题需要考虑:背包剩余容量(已使用容量) 和 物品数目增长。
  4. d p [ i ] [ j ] dp[i][j] dp[i][j]表示在背包容积设定为 j j j的情况下,前 i i i个物品所能够装的最大体积;
  5. 在已知前n-1个物品在不同容积限定下的最优解情况下,对于即将要考虑的第n个物体只有能 放入背包和不能放入背包两种情况,则
    当第n个物体不能放入背包时,背包容积不变:
    d p [ n ] [ k ] = d p [ n − 1 ] [ k ] dp[n][k]=dp[n-1][k] dp[n][k]=dp[n1][k]
    当第n个物体能放入背包时,考虑前n-1个物体占用的体积(从1到m):
    m a x ( 0 &lt; k &lt; m ) ( d p [ n − 1 ] [ k ] + A [ n ] ) max_{(0&lt;k&lt;m)}(dp[n-1][k]+A[n]) max(0<k<m)(dp[n1][k]+A[n]
    即,状态转移方程为:
    d p [ i ] [ m ] = m a x ( 0 &lt; k &lt; m ) ( i f ( m &gt; A [ i ] ) t h e n ( d p [ i − 1 ] [ k ] + A [ i ] ) ) dp[i][m] = max_{(0&lt;k&lt;m)} (if (m &gt;A[i]) then (dp[i-1][k]+A[i])) dp[i][m]=max(0<k<m)(if(m>A[i])then(dp[i1][k]+A[i])

即:当动态规划执行到第3个物品的时候,在容积为3的时候,考虑前3个物品在容积为(1~3)的限制下的最优解,并计算在不同容积限制下第四个物品能否放入,取所有情况下的最优解为 d p [ 4 ] [ 3 ] dp[4][3] dp[4][3]的解。这就称动态规划的一个定理:问题的最优解是由子问题的最优解组成的。
在这里插入图片描述

代码

利用二维数组,运算速度会比用vecor<vector > 的速度快;
int *dp = new intm+1; 将会执行默认初始化,将数组的每一位置为0;

class Solution {
public:
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A: Given n items with size A[i]
     * @return: The maximum size
     */
    int backPack(int m, vector<int> &A) {
        // write your code here
        int size = A.size(), i = 0, j = 0;
        if(size <= 0) {
            return 0;
        }
        int *dp = new int[m+1]();
        for(i=0; i<size; i++) {
            for(j=m; j>=1; j--) {
                if(j >= A[i]) {
                    int temp= dp[j-A[i]] + A[i];
                    dp[j] = (dp[j]>temp)?dp[j]:temp;
                }
            }
        }
        return dp[m];
        
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值