腾讯暑假实习在线笔编程试模拟试题-正方形判断

2018年3月23日牛客网举行了腾讯实习在线模拟笔试

先看题目:正方形判断

这里写图片描述
这里写图片描述

  • 思路1:
    用4个点,任意三点组成一个等边直角三角形,并且斜边是直角边的根号2倍(设斜边为y,那么和直角边为x 那么可以推出 y=(√2)*x ).
    这里写图片描述

原理:正方形你可以看着是由两个三角形拼接而成.正方形任意三点组合成等边直接三角形.

这个比较简单我就不列出代码了.可以利用数学向量的思想


  • 思路2:
    四个点组成6个线段,四个线段长度相等(正方形边长相等),另外两个线段相同(正方形对角线垂直平分且长度相等),并且你还需要证明 两个的线段长度 是四个线段的长度 根号2倍.
    为什么还需要证明长度有根号2倍?.因为有可能是如下情况
    这里写图片描述
    这里写图片描述

图片来自我的金同学

import java.awt.Point;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Scanner;



public class Main {

    //向量类 有些方法并没有用到
    static  class MVector{

        Point startPoint;

        Point endPoint;

        Point vector;

        int unSqrtDistance;
        int x;
        int y;

        public MVector() {

        }

        public int getY() {
            return y;
        }

        public void setY(int y) {
            this.y = y;
            vector=new Point(x, y);
            unSqrtDistance=x*x+y*y;
        }

        public MVector(Point startPoint, Point endPoint) {
            super();

            this.startPoint = startPoint;

            this.endPoint = endPoint;

            vector=new Point(endPoint.x-startPoint.x, endPoint.y-startPoint.y);

            x=vector.x;
            y=vector.y;

            unSqrtDistance=(int) ( Math.pow(endPoint.x-startPoint.x, 2)+Math.pow(endPoint.y-startPoint.y, 2)) ;
        }

        public static int mutiply(MVector p1,MVector p2){

            int result=p1.x*p2.x+p1.y*p2.y;

            return result;
        }

        //向量乘法
        public int mutiply(MVector p1){

            return mutiply(p1,this);
        }

        //两个向量角度
        public static double getAngle(MVector p1,MVector p2){

            double resultCos=p1.mutiply(p2)/Math.sqrt((p1.unSqrtDistance*p2.unSqrtDistance));

            return Math.acos(resultCos);

        }
        public  double getAngle(MVector p2){


            return getAngle(this,p2);
        }
        public MVector(int x, int y) {
            super();
            this.x = x;
            setY(y);

        }


    }

    public static void main(String[] args) {


        Scanner scanner = new Scanner(System.in);

        int n = scanner.nextInt();
        boolean reulst[]= new boolean[n];

        int[]points=new int[4];
        MVector[] mVectors= new MVector[6];
        Point point[] = new Point[4];

        int flagDistance= Integer.MIN_VALUE;

        boolean[]  result=new boolean[n];


        for (int i = 0; i < n*2; i++) {

            for (int j = 0; j < 4; j++) {

                if((i&1)!=0){
                    point[j]=new Point(points[j], scanner.nextInt());
                }else{
                    points[j]=scanner.nextInt();
                }
            }

            //如果是输入y
            if((i&1)!=0){

                //1-2   第一个点和第二个点组成向量
                mVectors[0] =new MVector(point[0],point[1]);

                //1-3
                mVectors[1] =new MVector(point[0],point[2]);

                //1-4
                mVectors[2] =new MVector(point[0],point[3]);

                //2-3
                mVectors[3] =new MVector(point[1],point[2]);

                //2-4
                mVectors[4] =new MVector(point[1],point[3]);

                //3-4
                mVectors[5] =new MVector(point[2],point[3]);

                //第一个长度
                int distance1=-1;
                //长度出现的次数
                int flag1=0;
                //同上
                int distance2=-1;
                int flag2=0;
                //注意向量长度为0的问题,如果两个点相同.
                if (mVectors[0].unSqrtDistance>0) {
                    distance1=mVectors[0].unSqrtDistance;
                    flag1++;
                }



                //判断6个边 是否只有两种长度 并且数量是4,另一个是2
                for (int j = 1; j < mVectors.length&&distance1!=-1; j++) {
                    if(mVectors[j].unSqrtDistance<=0){
                        break;  
                    }
                    else if(distance2==-1&&mVectors[j].unSqrtDistance!=distance1){
                        distance2=mVectors[j].unSqrtDistance;
                        flag2++;
                    }else if(mVectors[j].unSqrtDistance==distance1){
                        flag1++;
                    }else if (mVectors[j].unSqrtDistance==distance2) {
                        flag2++;
                    }else{
                        //出现第三个长度
                        break;
                    }
                }


                if ((flag1==4&&flag2==2)||(flag2==4&&flag1==2)) {
                    //长度根号倍 判断.正方形的边和对角线的平分 差两倍,不要轻易算根号 不然丢精度 如根号5
                    if (distance1<<1==distance2||distance2<<1==distance1) {
                        result[(i-1)/2]=true;
                    }

                }
            }


        }

        System.out.println(Arrays.toString(result));

    }
}
阅读更多
版权声明:范明毅的个人博客,欢迎转载,转载请注明出处 https://blog.csdn.net/qfanmingyiq/article/details/79678715
个人分类: 算法
上一篇Android开发之内容提供者——创建自己的ContentProvider(详解)
下一篇LCS最长公共序列java实现模板
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭