算法 - 判定素数的四种方法(JavaScript)

目录

素数的概念

素数只能被1和自身整除

素数平方根范围

素数不能是除了2外的偶数

大于等于5的素数一定和6的倍数相邻


素数的概念

素数又叫质数,素数是指在大于1的自然数中,除了1和它本身以外,不能被其他自然数整除的数。

100以内的素数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个。

素数只能被1和自身整除

素数只能被1和自身整除,所以遍历(1,n)开区间中的所有自然数给n来除,若存在整除,即余数为0,则表示该数n不是素数,否则就是素数。

function isPrime(n) {
  n = parseInt(n);

  if (n <= 3) {
    return n > 1;
  }

  for (let i = 2; i < n; i++) {
    if (n % i === 0) {
      return false;
    }
  }
  return true;
}

但是这种算法的复杂度为O(n)

素数平方根范围

假设n不是素数,则n除了可以被1和n整除外,还可以被i、j整除,即 n / i = j...0,比如15不是素数,15 / 3 = 5,比如35不是素数,35 / 5 = 7,此时i,j必然分别处于(1, Math.sqrt(n)]和[Math.sqrt(n), n) 之中,比如Math.sqrt(15) ≈ 3.8,则 3处于(1,3.8],5处于[3.8, 15)。比如Math.sqrt(4) = 2,则2处于(1,2]中,也处于[2,4)中。

function isPrime(n) {
  n = parseInt(n);

  if (n <= 3) {
    return n > 1;
  }

  for (let i = 2; i <= Math.sqrt(n); i++) {
    if (n % i === 0) {
      return false;
    }
  }
  return true;
}

此时算法复杂度为O(sqrt(n))

素数不能非2的其他偶数

除了2,所有偶数都不是素数

function isPrime(n) {
  n = parseInt(n);

  if (n <= 3) {
    return n > 1;
  }

  if (n % 2 === 0) {
    return false;
  }

  for (let i = 3; i <= Math.sqrt(n); i += 2) {
    if (n % i === 0) {
      return false;
    }
  }
  return true;
}

for循环中n,只能为上图浅蓝色部分。

因此上面算法减少了一半的循环,时间复杂度为O(sqrt(n) / 2) 

需要注意的是,本算法的代码不能将n % 2 === 0 的判断条件加入到循环中,如下代码存在漏洞

function isPrime(n) {
  n = parseInt(n);

  if (n <= 3) {
    return n > 1;
  }

  for (let i = 3; i <= Math.sqrt(n); i += 2) {
    if (n % 2 === 0 || n % i === 0) {
      return false;
    }
  }
  return true;
}

此时4、6、8都会被判定为素数。

漏洞形成的原因是,for循环的循环条件 i <= Math.sqrt(n) 不成立,比如n=4时,i <= Math.sqrt(4) 不成立,导致n无法进入循环中n % 2 === 0 的判断,而是直接退出循环,return true。

该算法只能保证循环条件   i <= Math.sqrt(n) 成立的n值判断素数正确,即 n >= i^2 = 9 时。

大于等于5的素数一定和6的倍数相邻

大于等于5的素数一定和6的倍数相邻

(注意这句话不等价于:和6的倍数相邻的数一定是大于5的素数,该结论不成立。)

如上图中,将大于等于5的数分为了:6y-1、6y、6y+1、6y+2、6y+3、6y+4(y>=1)

其中,6y、6y+2、6y+3、6y+4都不可能是素数,只有6y-1和6y+1可能是素数。

另外,6y-1(y>=1)和 6y + 5 (y>=0)等价。

所以,我们可以将n不为6y-1(或6y+5)和6y+1的数直接排除,排除方法为,

  if (n % 6 !== 1 && n % 6 !== 5) {
    return false;
  }

下面要剔除掉6y-1(或6y+5)和6y+1中的非素数,

  for (let i = 5; i <= Math.sqrt(n); i += 6) {
    if (n % i === 0 || n % (i + 2) === 0) {
      return false;
    }
  }

这里大家比较疑惑的可能有两点:

  • for循环i自增为啥是 6
  • for循环中素数判定的条件为啥是 n % i === 0 || n % (i+2) === 0

我们看上面图解,可以发现,6y-1,是基数为5,差值为6的等差数列,即 5 + 6x :

  • 对于 5 + 6x 而言,如果x为5的倍数(5 * z),则5 + 6x = 5 + 6 * 5 * z = 5 *(1+6z),则此时5 + 6x可以被5整除
  • 5 + 6x 还可以转化为 5 + 6 + 6 * (x-1) = 11 + 6(x-1),则只要x-1为11的倍数,则5 + 6x可以被11整除
  • 5 + 6x 还可以转化为 5 + 12 + 6 * (x-2) = 17 + 6(x-2),则只要x-2为17的倍数,则5 + 6x可以被17整除
  • ......

6y+1,是基数为7,差值为6的等差数列,即 7 + 6x :

  • 对于 7 + 6x 而言,如果x为7的倍数(7 * z),则7 + 6x = 7 + 6 * 7 * z = 7 *(1+6z),则此时7 + 6x可以被7整除
  • 7 + 6x 还可以转化为 7 + 6 + 6 * (x-1) = 13 + 6(x-1),则只要x-1为13的倍数,则7 + 6x可以被13整除
  • 7 + 6x 还可以转化为 7 + 12 + 6 * (x-2) = 19 + 6(x-2),则只要x-2为19的倍数,则7 + 6x可以被19整除
  • ......

所以6y-1和6y+1可能整除的数自增量为6,这是for循环i自增为啥是 6的原因

且6y-1和6y+1的整除数基数为5和7,相差为2,这是for循环中素数判定的条件为啥是 n % i === 0 || n % (i+2) === 0的原因

function isPrime(n) {
  n = parseInt(n);

  if (n <= 3) {
    return n > 1;
  }

  if (n % 6 !== 1 && n % 6 !== 5) {
    return false;
  }

  for (let i = 5; i <= Math.sqrt(n); i += 6) {
    if (n % i === 0 || n % (i + 2) === 0) {
      return false;
    }
  }

  return true;
}

此时时间复杂度为 O(sqrt(n) / 3) 

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
一、本书的内容 目前,市面上有关计算算法的书很多,有些叙述严谨但不全面,另外一些则是容量很大但不够严谨。本书将叙述的严谨性以及内容的深度和广度有地结合了起来。第1版推出后,即在世界范围内受到了广泛的欢迎,被各高等院校用作多种课程的教材和业界的标准参考资料。它深入浅出地介绍了大量的算法及相关的数据结构,以及用于解决一些复杂计算问题的高级策略(如动态规划、贪心算法、平摊分析等),重点在于算法的分析和设计。对于每一个专题,作者都试图提供目前最新的研究成果及样例解答,并通过清晰的图示来说明算法的执行过程。. 本书是原书的第2版,在第1版的基础之上增加了一些新的内容,涉及算法的作用、概率分析和随算法、线性规划,以及对第1版中详尽的、几乎涉及到每一小节的修订。这些修订看似细微,实际上非常重要。书中引入了“循环不变式”,并贯穿始终地用来证明算法的正确性。在不改动数学和分析重点的前提下,作者将第1版中的许多数学基础知识从第一部分移到了附录中。 二、本书的特点 本书在进行算法分析的过程中,保持了很好的数学严谨性。书中的分析和设计可以被具有各种水平的读者所理解。相对来说,每一章都可以作为一个相对独立的单元来教授或学习。书中的算法以英语加伪代码的形式给出,只要有一点程序设计经验的人都能读懂,并可以用任何计算语言(如C/C++和Java等)方便地实现。在书中,作者将算法的讨论集中在一些比较现代的例子上,它们来自分子生物学(如人类基因项目)、商业和工程等领域。每一小节通常以对相关历史素材的讨论结束,讨论了在每一算法领域的原创研究。 本书的特点可以概括为以下几个方面: 1.概念清晰,广度、深度兼顾。 本书收集了现代计算常用的数据结构和算法,并作了系统而深入的介绍。对涉及的概念和背景知识都作了清晰的阐述,有关的定理给出了完整的证明。 2.“五个一”的描述方法。 本书以相当的深度介绍了许多常用的数据结构和有效的算法。编写上采用了“五个一”,即一章介绍一个算法、一种设计技术、一个应用领域和一个相关话题。.. 3.图文并茂,可读性强。 书中的算法均以通俗易懂的语言进行说明,并采用了大量插图来说明算法是如何工作的,易于理解。 4.算法的“伪代码”形式简明实用。 书中的算法均以非常简明的“伪代码”形式来设计,可以很容易地把它转化为计算程序,直接应用。 注重算法设计的效率,对所有的算法进行了仔细、精确的运行时间分析,有利于进一步改进算法。 三、本书的用法 本书对内容进行了精心的设计和安排,尽可能考虑到所有水平的读者。即使是初学计算算法的人,也可以在本书中找到所需的材料。 每一章都是独立的,读者只需将注意力集中到最感兴趣的章节阅读。 1.适合作为教材或教学参考书。 本书兼顾通用性与系统性,覆盖了许多方面的内容。本书不但阐述通俗、严谨,而且提供了大量习和思考题。针对每一节的内容,都给出了数量和难度不等的习题。习题用于考察对基本内容的掌握程度,思考题有一定的难度,需进行精心的研究,有时还通过思考题介绍一些新的知识。 前言回到顶部↑本书提供了对当代计算算法研究的一个全面、综合性的介绍。书中给出了多个算法,并对它们进行了较为深入的分析,使得这些算法的设计和分析易于被各个层次的读者所理解。力求在不牺牲分析的深度和数学严密性的前提下,给出深入浅出的说明。. 书中每一章都给出了一个算法、一种算法设计技术、一个应用领域或一个相关的主题。算法是用英语和一种“伪代码”来描述的,任何有一点程序设计经验的人都能看得懂。书中给出了230多幅图,说明各个算法的工作过程。我们强调将算法的效率作为一种设计标准,对书中的所有算法,都给出了关于其运行时间的详细分析。 本书主要供本科生和研究生的算法或数据结构课程使用。因为书中讨论了算法设计中的工程问题及其数学性质,因此,本书也可以供专业技术人员自学之用。 本书是第2版。在这个版本里,我们对全书进行了更新。所做的改动从新增了若干章,到个别语句的改写。 致使用本书的教师 本书的设计目标是全面、适用于多种用途。它可用于若干课程,从本科生的数据结构课程到研究生的算法课程。由于书中给出的内容比较多,只讲一学期一般讲不完,因此,教师们应该将本书看成是一种“缓存区”或“瑞典式自助餐”,从中挑选出能最好地支持自己希望教授的课程的内容。 教师们会发现,要围绕自己所需的各个章节来组织课程是比较容易的。书中的各章都是相对独立的,因此,你不必担心意想不到的或不必要的各章之间的依赖关系。每一章都是以节为单位,内容由易到难。如果将本书用于本科生的课程,可以选用每一章的前面几节内容;在研究生课程中,则可以完整地讲授每一章。 全书包含920多个习题和140多个思考题。每一节结束时给出习题,每一章结束时给出一些

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伏城之外

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值