素数的判断方法总结

参考博客:https://www.cnblogs.com/wpnan/p/4073852.html

                 https://blog.csdn.net/f81892461/article/details/8582074

                 https://blog.csdn.net/qq_34739984/article/details/52999528

一、素数:(质数prime  number)定义为在大于1的自然数中,除了1和它本身以外不再有其他因数,素数有无穷多个。

先来两张素数分布表

 二、判断一个数n是否为素数

(一)最简单方法(从2到n-1每个数均整除判断)时间复杂度O(n)

int isPrime(int k)
{
    int j;
    for ( j=2; j<k; j++ )    
    {
        if(k%j==0)    // 如果不为素数返回0 
        {
             return 0;
        }
        }
    return 1;    // 反之则返回1 
}

(二)开根号法:从2到\sqrt{}n均整除判断,时间复杂度O(\sqrt{}n)(原因:素数是因子为1和本身, 如果数c不是素数,则还有其他因子,其中的因子,假如为a,b.其中必有一个大于sqrt(c) ,一个小于sqrt(c) 。所以m必有一个小于或等于其平方根的因数,那么验证素数时就只需要验证到其平方根就可以了。即一个合数一定含有小于它平方根的质因子。)

int isPrime(int n)
{
    int i;
    for ( i=2; i<=sqrt(n); i++ )    
    {
        if(n%i==0)    // 如果不为素数返回0 
      {
           return 0;
        }
    }
    return 1;    // 反之则返回1 
}

三、判断1-n个数中的素数,并存下来

(一)开根法

//最普通的方法:
#include<stdio.h>
#include<math.h>#define N 10000001
int prime[N];
int main()
{
    int i, j, num = 0;
for(i=2; i<N; i++)
    {  for(j=2; j<=sqrt(i); j++)
         if( j%i==0 ) break;
       if( j>sqrt(i) ) prime[num++] = i;
    }
for(i=2; i<100; i++) //由于输出将占用太多io时间,所以只输出2-100内的素数。可以把100改为N
    if( prime )printf("%d ",i);
   
return 0;
}

(二)素数筛选法:就是当i是素数的时候,i的所有的倍数必然是合数。如果i已经被判断不是质数了,那么再找到i后面的质数来把这个质数的倍数筛掉。

一个简单的筛素数的过程:n=30。
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

    第 1 步过后2 4 ... 28 30这15个单元被标成false,其余为true。
    第 2 步开始:
     i=3;  由于prime[3]=true, 把prime[6], [9], [12], [15], [18], [21], [24], [27], [30]标为false.
     i=4;  由于prime[4]=false,不在继续筛法步骤。
     i=5;  由于prime[5]=true, 把prime[10],[15],[20],[25],[30]标为false.
     i=6>sqrt(30)算法结束。
    第 3 步把prime[]值为true的下标输出来:
     for(i=2; i<=30; i++)
     if(prime) printf("%d ",i);
    结果是 2 3 5 7 11 13 17 19 23 29

 

算法具体实现

void compute_prime_table() //筛选法求出500000以内的所有素数
{	int i,j;
	p[0] = p[1] = 0;
	for(i=2;i<=500000;i++)
		p[i]=1; //初始化
	for(i=2;i<=1000;)//对所有小于1000的素数,删除他们的倍数
	{	for(j=i+i;j<=500000;j+=i)
			p[j]=0;//删除i的所有倍数
		for(i++;!p[i];i++);//找下一个素数}
	for(i=0,k=0;i<=500000;i++)
	{	if(p[i])
		{	primes[k]=i;
			k++;}
	}
}

(三)基于筛选法的素数求取方式

基于筛选法的素数求取方式:用数组的方式存取筛选候选集,根据质数的倍数不是质数,偶数不是质数的原则进行一次次筛选。

#include <stdio.h>
#include <math.h>
#define N 10000001
int prime[N];
int main()
{
   int i, j;
   for(i=2; i<N; i++){
       if(i%2) prime[i]=1;
       else prime[i]=0;
   }

   for(i=3; i<=sqrt(N); i++)
   {   if(prime[i]==1)
       for(j=i+i; j<N; j+=i) prime[j]=0;
   }

   for(i=2; i<100; i++)//只输出2-100内的素数
    if( prime[i]==1 )printf("%d ",i);
   printf("\n");

   return 0;
}

 

  • 18
    点赞
  • 2
    评论
  • 66
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值