最小传输时延

486 篇文章 769 订阅

已下架不支持订阅

博客介绍了如何利用Dijkstra算法解决华为机试中的一道问题,该问题要求计算网络中从指定源节点到目标节点的最小传输时延。题目提供了有向无环图的边权重,节点数量和时延列表。输入包括网络结点数、时延列表长度以及源和目标节点。若目标节点不可达,返回-1。解决方案覆盖了Java、JavaScript和Python三种语言的算法实现。
摘要由CSDN通过智能技术生成

题目描述

某通信网络中有N个网络结点,用1到N进行标识。网络通过一个有向无环图表示,其中图的边的值表示结点之间的消息传递时延。

现给定相连节点之间的时延列表times[i]={u,v,w},其中u表示源结点,v表示目的结点,w表示u和v之间的消息传递时延。

请计算给定源结点到目的结点的最小传输时延,如果目的结点不可达,返回-1

注:

  • N的取值范围为[1,100];
  • 时延列表times的长度不超过6000,且 1 <= u,v <= N,0 <= w <= 100;

输入描述

输入的第一行为两个正整数,分别表示网络结点的个数N,以及时延列表的长度M,用空格分隔;

接下来的M行为两个结点间的时延列表[u v w];

输入的最后一行为两个正整数,分别表示源结点和目的结点。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值