算法设计 - 01背包问题的状态转移方程优化,以及完全背包问题

565 篇文章

已下架不支持订阅

01背包问题的一维状态转移方程的推导

前提摘要

前面这篇博客中:

算法设计 - 01背包问题_伏城之外的博客-CSDN博客

我们已经推导出了01背包问题的二维数组dp状态转移方程公式:

假设有N种不同物品,且每种物品只有1个,第 i 个物品的重量表示为w[i],价值表示为p[i],现在有一个背包,其承重是W,现要求该背包装物品能得到的最大价值是多少?

dp[i][0] = 0,dp[0][j] = 0

  • if w[i] <= W :dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j - w[i]] + p[i]) 
  • else:dp[i][j] = dp[i-1][j]

二维数组中元素dp[i][j]的含义是:

物品可选范围为

已下架不支持订阅

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值