pymodhook
是一个记录任意对Python模块的调用的库,用于Python逆向分析。
pymodhook
库类似于Android的xposed框架,但不仅能记录函数的调用参数和返回值,还能记录模块的类的任意方法调用,以及任意派生对象的访问,基于pyobject.objproxy库实现。
备注:请勿用本工具注入未授权的商业软件!
GitHub: qfcy/PyModuleHook
DLL注入工具
由于只依赖于加载的python3x.dll,工具支持记录Nuitka/Cython打包的应用的模块调用,而不仅仅是PyInstaller。
1.复制模块文件
首先用pip install pymodhook
安装pymodhook
及其依赖的pyobject
包,
再打开<Python安装目录>/Lib/site-packages
文件夹(Python安装目录视环境而异),将pyobject
包,pymodhook.py
,pymodhook-patches
目录,和__hook__.py复制到目录下:
另外如果是Python 3.8或以下的版本,还需要复制astor
模块。
2.修改 __hook__.py
__hook__.py
是注入的DLL执行的第一段Python代码,默认的__hook__.py
是:
# 放入打包程序目录的__hook__.py的模板
import atexit, pprint, traceback
CODE_FILE = "hook_output.py"
OPTIMIZED_CODE_FILE = "optimized_hook_output.py"
VAR_DUMP_FILE = "var_dump.txt"
ERR_FILE = "hooktool_err.log"
def export_code():
try:
with open(CODE_FILE, "w", encoding="utf-8") as f:
f.write(get_code())
with open(VAR_DUMP_FILE, "w", encoding="utf-8") as f:
dump_scope(file=f)
with open(OPTIMIZED_CODE_FILE, "w", encoding="utf-8") as f:
f.write(get_optimized_code())
except Exception:
with open(ERR_FILE, "w", encoding="utf-8") as f:
traceback.print_exc(file=f)
try:
from pymodhook import *
from pyobject.objproxy import ReprFormatProxy
init_hook()
hook_modules("wx","matplotlib.pyplot","requests",deep_hook=True) # 本行可修改
atexit.register(export_code)
except Exception:
with open(ERR_FILE, "w", encoding="utf-8") as f:
traceback.print_exc(file=f)
一般只需要将调用hook_modules()
的这行,修改成自定义的其他模块即可。deep_hook=True
选项一般用于Cython/Nuitka打包的应用,对于普通应用deep_hook
是可选的。
另外对于特定库,可能还需要自行修改pymodhook-patches目录。
3.注入DLL
在项目的Release页面下载DLLInject_win_amd64.zip。
下载后解压并运行hook_win32.exe,搜索目标进程并选中,再点击"Inject DLL"按钮:
如果注入成功,会看到这个提示:
4.获取注入结果
注入成功后如果程序退出(非强制终止进程),模块hook的结果hook_output.py
, optimized_hook_output.py
和var_dump.txt
会在被注入进程的工作目录生成。
hook_output.py
是原始的详细调用记录,optimized_hook_output.py
是简化后的模块调用代码,var_dump.txt
为所有变量的转储。
如果结果生成失败,还会额外生成一个文件hooktool_err.log
,记录错误消息。
optimized_hook_output.py
的示例:
import tkinter as tk
Canvas = tk.Canvas
import matplotlib.pyplot as plt
import requests
var0 = tk.Tk()
ex_var1 = int(tk.wantobjects)
var15 = var0.tk
var0.title('Tk')
var0.withdraw()
var0.iconbitmap('paint.ico')
var0.geometry('400x300')
var0.overrideredirect(ex_var1)
var43 = Frame(var0, bg='gray92')
var43._last_child_ids = {}
var28 = Canvas(var43, bg='#d0d0d0', fg='#000000')
var28.pack(expand=ex_var1, fill='x')
var28._last_child_ids = {}
# external var53: <function object at 0x000001F3F0A27180>
var0.bind('<Button-1>', var53)
var0.mainloop()
...
var_dump.txt
的示例:
{...,
'ex_var855': True,
'ex_var860': True,
'ex_var875': True,
...
'var123': <function BaseWidget.__init__ at 0x04616B28>,
'var124': <tkinter.ttk.Button object .!frame.!button3>,
'var125': {'command': <bound method Painter.save of <painter.Painter object at 0x047298F0>>,
'text': '保存',
'width': 4},
'var126': None,
'var127': <function BaseWidget._setup at 0x04616AE0>,
'var128': {'command': <bound method Painter.save of <painter.Painter object at 0x047298F0>>,
'text': '保存',
'width': 4},
...
'var146': '.!frame.!button3',
'var147': <built-in method call of _tkinter.tkapp object at 0x048C3890>,
'var148': '',
'var152': <function BaseWidget.__init__ at 0x04616B28>,
'var153': <tkinter.ttk.Button object .!frame.!button4>,
'var154': {'command': <bound method Painter.clear of <painter.Painter object at 0x047298F0>>,
'text': '清除',
'width': 4},
...
}
附:pymodhook库的用法
运行命令pip install pymodhook
,即可安装pymodhook
库。
示例
hook了numpy
和matplotlib
库的示例:
from pymodhook import *
init_hook()
hook_modules("numpy", "matplotlib.pyplot", for_=["__main__"]) # 记录numpy和matplotlib的调用
enable_hook()
import numpy as np
import matplotlib.pyplot as plt
arr = np.array(range(1,11))
arr_squared = arr ** 2
mean = np.mean(arr)
std_dev = np.std(arr)
print(mean, std_dev)
plt.plot(arr, arr_squared)
plt.show()
# 显示记录的代码
print(f"原始调用记录:\n{get_code()}\n")
print(f"优化后的代码:\n{get_optimized_code()}")
运行后会出现类似IDA等工具生成的代码:
原始调用记录:
import numpy as np
matplotlib = __import__('matplotlib.pyplot')
var0 = matplotlib.pyplot
var1 = np.array
var2 = var1(range(1, 11))
var3 = var2 ** 2
var4 = np.mean
var5 = var4(var2)
var6 = var2.mean
var7 = var6(axis=None, dtype=None, out=None)
var8 = np.std
var9 = var8(var2)
var10 = var2.std
var11 = var10(axis=None, dtype=None, out=None, ddof=0)
ex_var12 = str(var5)
ex_var13 = str(var9)
var14 = var0.plot
var15 = var14(var2, var3)
var16 = var2.shape
var17 = var2.shape
var18 = var2[(slice(None, None, None), None)]
var19 = var18.ndim
var20 = var3.shape
var21 = var3.shape
var22 = var3[(slice(None, None, None), None)]
var23 = var22.ndim
var24 = var2.values
var25 = var2._data
var26 = var2.__array_struct__
var27 = var3.values
...
var51 = var41.__array_struct__
var52 = var0.show
var53 = var52()
优化后的代码:
import numpy as np
import matplotlib.pyplot as plt
var2 = np.array(range(1, 11))
plt.plot(var2, var2 ** 2)
plt.show()
详细用法
-
init_hook(export_trivial_obj=True, hook_method_call=False, **kw)
初始化模块hook,需要在调用hook_module()
和hook_modules()
之前调用。export_trivial_obj
:是否不继续hook模块函数返回的基本类型(如整数、列表、字典等)。hook_method_call
:是否hook模块类实例的方法内部调用(即方法的self
传入的是ProxiedObj
而不是原先的对象)- 其它参数通过
**kw
传递给ObjChain
。
-
hook_module(module_name, for_=None, hook_once=False, deep_hook=False, deep_hook_internal=False, hook_reload=True)
钩住(hook)一个模块,后续导入这个模块时会返回hook后的模块。module_name
:要hook的模块名(如"numpy"
)。for_
:只有从特定模块(如["__main__"]
)导入时才应用hook,能避免底层模块之间相互依赖导致的报错。如果不提供,默认对所有模块全局应用hook。hook_once
:只在首次导入时返回hook后的库,后续直接返回原模块。deep_hook
:是否hook模块中的每个函数和类,而不是模块本身。deep_hook
为True
时模块始终被hook,for_
,hook_once
和enable_hook
不起作用。deep_hook_internal
:deep_hook
为True
时,是否hook以下划线开头的对象(双下划线对象如__loader__
除外)。hook_reload
:是否继续hook通过importlib.reload()
返回的同一新模块。
-
hook_modules(*modules, **kw)
一次hook多个模块,如hook_modules("numpy","matplotlib")
,关键字参数的其他用法同hook_module
函数。 -
unhook_module(module_name)
取消对指定模块的hook,包括deep_hook
后的模块。module_name
:要撤销hook的模块名。
-
enable_hook()
启用模块hook的全局开关(默认关闭)。启用后,导入被hook的模块时才会返回hook对象。deep_hook
为True
时不需要手动调用enable_hook
。 -
disable_hook()
禁用模块hook的全局开关。禁用时不会导入hook后的模块,除非使用了deep_hook=True
。 -
import_module(module_name)
导入并返回子模块对象,而不是根模块。module_name
:如"matplotlib.pyplot"
,会返回pyplot
子模块对象。
-
get_code(*args, **kw)
生成模块原始调用记录的Python代码,可用于重现当前对象依赖关系,以及库调用历史。 -
get_optimized_code(*args, **kw)
生成优化后的代码,同get_code
用法。(代码优化在内部使用了有向无环图(DAG),详细优化原理见pyobject库) -
get_scope_dump()
返回当前hook链的变量命名空间(作用域)字典的浅拷贝,用于调试和分析。 -
dump_scope(file=None)
将整个变量命名空间字典用pprint
输出到流file
,某个对象的__repr__()
方法出错时输出不会中断。file
默认为sys.stdout
。 -
getchain()
返回用于hook模块的全局pyobject.ObjChain
实例,用于手动操作ObjChain
。如果尚未调用init_hook()
,返回None
。
pymodhook-patches目录
pymodhook-patches目录内部包含了多个以模块名命名的json文件,包含不能hook的自定义的属性和函数名,用于兼容特定的Python库。
如matplotlib.pyplot.json
的格式如下:
{
// 每个键是可选的
"export_attrs":["attr"], // 要导出的属性名(即plt.attr返回原始对象,而不是pyobject.ProxiedObj)
"export_funcs":["plot","show"], // 要导出的函数名(即函数的调用返回值是原始对象,而不是pyobject.ProxiedObj)
"alias_name":"plt" // 模块的常用别名,用于控制代码生成格式(如import matplotlib.pyplot as plt)
}
工作原理
库在底层使用了pyobject.objproxy
库中的ObjChain
,用于动态代码生成,而本pymodhook
库是pyobject.objproxy
的高层封装。详细原理参见pyobject.objproxy的文档。