Just for fun的专栏

好玩,最重要

集成学习实战

如果你随机想几千个人询问一个复杂问题,然后汇总他们的回答。在许多情况下,你会发现,这个汇总的回答比专家的回答还要好。这被称为群体智慧。同样,如果你聚合一组预测器(比如分类器或回归器)的预测,得到的预测结果也比最好的单个预测要好。这样的一组预测器,我们称为集成,所以这种技术,也被称为集成学习,而一个...

2019-05-08 16:09:28

阅读数 33

评论数 0

解决多标签分类问题(包括案例研究)

原文 由于某些原因,回归和分类问题总会引起机器学习领域的大部分关注。多标签分类在数据科学中是一个比较令人头疼的问题。在这篇文章中,我将给你一个直观的解释,说明什么是多标签分类,以及如何解决这个问题。 1.多标签分类是什么? 让我们来看看下面的图片。 如果我问你这幅图中有一栋房子,你会怎...

2019-04-10 18:26:24

阅读数 84

评论数 0

论文笔记:多标签学习综述(A review on multi-label learning algorithms)

2014 TKDE(IEEE Transactions on Knowledge and Data Engineering)张敏灵,周志华 简单介绍 传统监督学习主要是单标签学习,而现实生活中目标样本往往比较复杂,具有多个语义,含有多个标签。本综述主要介绍了多标签学习的一些相关内容,包括相关定义...

2019-04-10 17:42:25

阅读数 209

评论数 0

最大熵用于文本分类

https://blog.csdn.net/golden1314521/article/details/45576089 https://github.com/doubleEN/Maxent一个实例 原始数据集和完整的代码见 http://download.csdn.net/detail/u0...

2019-01-18 15:14:07

阅读数 290

评论数 0

条件随机场CRF总结和实现

https://applenob.github.io/crf.html https://github.com/heshenghuan/linear_chain_crf 实例 条件随机场 CRF总结和实现 目录 概率无向图模型 条件随机场 参数化形式 简化形式 矩阵形式 三...

2019-01-09 15:43:44

阅读数 500

评论数 0

广义线性模型的理解

http://www.cnblogs.com/tsreaper/p/glm.html 世界中(大部分的)各种现象背后,都存在着可以解释这些现象的规律。机器学习要做的,就是通过训练模型,发现数据背后隐藏的规律,从而对新的数据做出合理的判断。 虽然机器学习能够自动地帮我们完成很多事情(比如训练模型...

2018-12-06 13:51:19

阅读数 133

评论数 0

指数分布族

从标题上看,是“指数分布族(exponential family)”,不是“指数分布(exponential distribution)”,这是两个不同的概念,不要弄混了。指数分布族在上世纪30年代中期被提出,在概率论和统计学中,它是一些有着特殊形式的概率分布的集合,包括许多常用的分布,如正态分布...

2018-12-06 13:48:45

阅读数 167

评论数 0

隐马尔科夫模型python实现简单拼音输入法

在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此训练得出隐马尔科夫模型,用维特比算法实现了一个简单的拼音输入法。githuh地址:https://...

2017-12-11 10:29:34

阅读数 336

评论数 1

[python] LDA处理文档主题分布及分词、词频、tfidf计算

这篇文章主要是讲述如何通过LDA处理文本内容TXT,并计算其文档主题分布,主要是核心代码为主。其中LDA入门知识介绍参考这篇文章,包括安装及用法:         [python] LDA处理文档主题分布代码入门笔记         1.输入输出         输入是test....

2017-11-07 20:05:39

阅读数 4716

评论数 3

gensim

作为自然语言处理爱好者,大家都应该听说过或使用过大名鼎鼎的Gensim吧,这个一款具备多种功能的神器,为了深入了解该工具的使用方法,本人将使用该工具进行一系列实战。        该系列博客共分为以下几章:       (一)Gensim简介及使用环境搭建       (二)工具...

2017-11-07 20:02:26

阅读数 236

评论数 0

[python] LDA处理文档主题分布代码入门笔记

以前只知道LDA是个好东西,但自己并没有真正去使用过。同时,关于它的文章也非常之多,推荐大家阅读书籍《LDA漫游指南》,最近自己在学习文档主题分布和实体对齐中也尝试使用LDA进行简单的实验。这篇文章主要是讲述Python下LDA的基础用法,希望对大家有所帮助。如果文章中有错误或不足之处,还请海涵~...

2017-11-07 19:46:57

阅读数 891

评论数 1

大数据竞赛平台——Kaggle 入门篇

大数据竞赛平台——Kaggle 入门篇 这篇文章适合那些刚接触Kaggle、想尽快熟悉Kaggle并且独立完成一个竞赛项目的网友,对于已经在Kaggle上参赛过的网友来说,大可不必耗费时间阅读本文。本文分为两部分介绍Kaggle,第一部分简单介绍Kaggle,第二...

2017-11-04 19:20:04

阅读数 357

评论数 0

逻辑回归应用之Kaggle泰坦尼克之灾

作者: 寒小阳  时间:2015年11月。  出处:http://blog.csdn.net/han_xiaoyang/article/details/49797143  声明:版权所有,转载请注明出处,谢谢。 1.引言 先说一句,年末双十一什么的一来,真是非(mang)常(ch...

2017-11-04 19:15:01

阅读数 280

评论数 0

最近收集的中科院研究生教学视频

[?][-] eD2k链接   帮助 | eMule官方 | eMule Fans 电骡爱好者 | eMule-Mods.de | 插件主页 小波与滤波器组-28-中科院.iso 查源 2.27GB [面向对象程序设计CP...

2017-10-08 16:47:20

阅读数 2170

评论数 1

EM算法及其应用(代码)

最近上模式识别的课需要做EM算法的作业,看了机器学习公开课及网上的一些例子,总结如下:(中间部分公式比较多,不能直接粘贴上去,为了方便用了截图,请见谅) 概要 适用问题 EM算法是一种迭代算法,主要用于计算后验分布的众数或极大似然估计,广泛地应用于缺损数据、截尾数据、成群数据、带有讨厌参数的...

2017-10-08 16:45:30

阅读数 502

评论数 0

常用采样方法

常用采样方法 最近在学习 MCMC,一种特殊的采样方法,顺便把其他常用的方法了解了一下。 为什么要采样? 很多问题,我们只需要使用数学解析的方法即可解决。例如对 f(x)做积分,如果 f(x) = x^2,那么直接积分就行,很简单。 若f(x)是标准正态分布的概率密度函...

2017-10-08 15:26:59

阅读数 269

评论数 0

20 个顶尖的 Python 机器学习开源项目

1. Scikit-learn www.github.com/scikit-learn/scikit-learn Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机...

2017-10-06 11:36:17

阅读数 331

评论数 0

机器学习算法与Python实践之支持向量机(SVM)初级

机器学习算法与Python实践之支持向量机(SVM)初级          机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。恰...

2017-10-06 11:32:39

阅读数 168

评论数 0

SVM -支持向量机原理与实践之实践篇

SVM -支持向量机原理与实践之实践篇 前言 最近太忙,这几天还是抽空完成实践篇,毕竟所有理论都是为实践服务的,上一篇花了很大篇幅从小白的角度详细的分析了SVM支持向量积的原理,当然还有很多内容没有涉及到,例如支持向量回归,不敏感损失函数等内容,但是也不妨碍我们用支持向量机去实...

2017-10-06 11:28:25

阅读数 272

评论数 0

机器学习经典书籍

前面有一篇机器学习经典论文/survey合集811。本文总结了机器学习105的经典书籍,包括数学基础和算法理论的书籍。本文会保持更新,欢迎推荐。 入门书单 《数学之美》 PDF2.3K 作者吴军大家都很熟悉。以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。 ...

2017-10-01 19:19:26

阅读数 357

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭