springboot毕设基于协同过滤算法的服装风格推荐系统论文+程序+部署

本系统(程序+源码)带文档lw万字以上 文末可获取一份本项目的java源码和数据库参考。

系统程序文件列表

开题报告内容

一、研究背景

随着互联网技术的飞速发展,电子商务行业蓬勃兴起,服装类的电子商务网站在其中占据了相当大的份额 [1] 。如今,服装市场的规模持续扩大,服装款式和风格日益多样化。消费者在面对海量的服装选择时,往往会感到不知所措,难以快速找到符合自己风格喜好的服装。传统的搜索和筛选方式效率较低,无法精准地满足消费者的个性化需求。在这样的背景下,需要一种智能化的推荐系统来帮助消费者更高效地发现心仪的服装。

二、研究意义

从消费者的角度来看,基于协同过滤算法的服装风格推荐系统能够节省消费者的时间和精力。通过分析消费者的历史购买行为、浏览记录等数据,系统可以为消费者精准推荐符合其风格喜好的服装,提高消费者的购物体验,增强消费者对服装电商平台的满意度和忠诚度。对于服装商家来说,该系统有助于提高商品的销售转化率。精准的推荐能够将合适的服装推荐给潜在的购买者,减少库存积压,提高运营效率,同时也有助于商家更好地了解消费者的需求,优化产品布局和营销策略。从整个服装电商行业来看,这种推荐系统的应用可以推动行业向更加智能化、个性化的方向发展,提升行业的整体竞争力。

三、研究目的

本研究旨在构建一个基于协同过滤算法的服装风格推荐系统。通过收集和分析用户的相关数据,如用户的基本信息、购买历史、浏览记录等,准确把握用户的服装风格偏好。利用协同过滤算法,找到与目标用户具有相似喜好的其他用户或者相似风格的服装,从而为目标用户提供个性化的服装风格推荐。同时,通过不断优化算法和系统功能,提高推荐的准确性和效率,满足用户日益增长的个性化购物需求,促进服装电商行业的发展。

四、研究内容

  • 用户相关功能的研究
    • 首先需要研究如何全面收集用户的各类信息。除了基本的注册信息,如年龄、性别等,还要深入挖掘用户的行为数据,包括购买历史、浏览记录、收藏夹内容等。例如,通过分析用户购买服装的价格区间,可以初步判断用户的消费档次;从浏览记录中可以发现用户对某些特定风格(如休闲风、复古风等)或者品牌的关注度。
    • 研究如何建立用户画像。基于收集到的用户信息,将用户的特征进行标签化处理,构建出多维度的用户画像。这有助于更精准地分析用户的服装风格喜好,为后续的推荐提供依据。例如,一个年轻、经常购买时尚品牌且浏览大量潮流风格服装的用户,其用户画像可能被标记为“年轻时尚追求者”。
    • 探索用户反馈机制的建立。用户对推荐结果的反馈是优化推荐系统的重要依据。研究如何设计方便用户反馈的方式,如评分、评论等,并且如何根据用户反馈及时调整推荐策略。例如,如果用户对推荐的服装给出低评分,系统要能够分析原因,是风格不符还是尺寸问题等,进而改进推荐算法。
  • 服装分类功能的研究
    • 要建立科学合理的服装分类体系。这不仅要考虑传统的服装分类方式,如按照性别、季节、款式等分类,还要结合当下流行的风格分类,如韩系、日系、欧美系等。研究如何确定分类的标准和层次结构,使得服装分类既能涵盖各种服装类型,又便于系统进行数据处理和推荐。
    • 研究如何将服装的各种属性与分类进行关联。一件服装可能具有多种属性,如颜色、材质、图案等,这些属性与服装的风格分类密切相关。例如,棉质的、浅色系、带有小碎花图案的服装可能更倾向于田园风的分类。通过建立这种关联,可以提高系统在推荐时对服装风格判断的准确性。
    • 探讨服装分类数据的更新机制。随着时尚潮流的不断变化,新的服装款式和风格不断涌现,研究如何及时更新服装分类数据,确保系统的推荐能够紧跟时尚潮流。例如,当某种新的小众风格开始流行时,系统能够迅速将相关服装纳入对应的分类中。
  • 服装信息功能的研究
    • 深入研究服装信息的收集渠道。除了商家提供的基本信息,如商品描述、尺码表等,还要探索从其他渠道获取更多服装信息的方法,如时尚杂志、社交媒体上的时尚资讯等。这些额外的信息可以丰富服装的描述,有助于更准确地判断服装风格,从而为推荐提供更全面的依据。
    • 研究如何对服装信息进行有效的存储和管理。服装信息数据量庞大,需要设计合理的数据库结构来存储这些信息,确保信息的完整性和查询效率。例如,采用关系型数据库来存储服装的基本信息,同时利用非关系型数据库来存储一些如服装搭配图片等非结构化的数据。
    • 分析如何在推荐过程中充分利用服装信息。例如,在推荐相似风格的服装时,可以根据服装的详细信息,如材质的相似性、图案的搭配等因素进行综合考量,提高推荐结果的质量。

五、拟解决的主要问题

  • 冷启动问题
    • 在新用户注册或者新服装款式上架时,由于缺乏足够的历史数据,协同过滤算法可能无法准确进行推荐。对于新用户,没有购买和浏览记录等数据可供分析其服装风格偏好;对于新服装,没有用户的交互数据来确定其与其他服装的相似性。需要研究如何采用其他方式,如基于热门商品推荐、基于用户基本信息的初步推荐等,来解决冷启动问题,使得新用户和新服装能够尽快融入推荐系统。
  • 数据稀疏问题
    • 在实际应用中,用户与服装之间的交互数据往往是稀疏的。例如,大部分用户可能只购买或浏览了少数几种风格的服装,这会导致用户 - 服装矩阵存在大量的空白数据。这种数据稀疏性会影响协同过滤算法计算用户或服装之间相似度的准确性。研究如何通过数据填充、采用其他辅助信息等方法来缓解数据稀疏问题,提高推荐的质量。
  • 推荐准确性和多样性的平衡问题
    • 一方面要提高推荐的准确性,使推荐的服装风格与用户的喜好高度匹配;另一方面也要保证推荐的多样性,避免推荐结果过于单一。如果过于追求准确性,可能会导致推荐结果总是局限于用户已经熟悉的少数几种风格或品牌,不利于用户发现新的服装风格。研究如何在算法中设置合适的参数或者采用多算法融合的方式,在确保推荐准确性的同时,增加推荐的多样性。

六、研究方案

  • 数据收集阶段
    • 从多个数据源收集数据,包括服装电商平台的交易记录、用户浏览行为记录、服装商品信息等。同时,考虑从外部获取一些补充数据,如时尚潮流资讯网站的数据,以丰富数据来源。
    • 采用数据清洗技术,对收集到的数据进行预处理,去除无效数据、重复数据,并对数据进行格式化处理,以便后续的分析和算法应用。
  • 算法设计阶段
    • 根据研究目的和数据特点,选择合适的协同过滤算法,如基于用户的协同过滤、基于物品的协同过滤或者混合型协同过滤算法。
    • 对选定的算法进行优化,针对冷启动问题和数据稀疏问题,采用相应的改进措施。例如,在基于用户的协同过滤算法中,可以引入用户的基本信息作为辅助因素来计算用户相似度,以缓解冷启动问题;对于数据稀疏问题,可以采用矩阵填充算法对用户 - 服装矩阵进行填充。
  • 系统构建阶段
    • 根据系统功能需求,设计系统的架构,包括用户管理模块、服装分类管理模块、服装信息管理模块、推荐引擎模块等。各个模块之间要实现良好的交互和数据共享。
    • 开发用户界面,确保界面简洁、易用,方便用户进行操作,如查看推荐结果、提供反馈等。
    • 进行系统测试,采用模拟数据和实际数据对系统进行功能测试、性能测试等,确保系统的稳定性和可靠性。发现问题及时进行调整和优化。
  • 评估与优化阶段
    • 建立评估指标体系,如推荐准确率、召回率、多样性指标等,对系统的推荐效果进行评估。
    • 根据评估结果,对系统进行优化。如果推荐准确率较低,可以对算法进行调整或者进一步优化用户画像的构建;如果多样性不足,可以调整算法中的参数或者改进推荐策略。

七、预期成果

  • 构建出一个有效的服装风格推荐系统
    • 该系统能够准确地为用户推荐符合其风格喜好的服装。通过对用户数据的分析和协同过滤算法的应用,推荐结果在准确性上能够达到较高的水平,例如推荐准确率能够达到80%以上。
  • 解决一些关键问题
    • 在一定程度上解决冷启动问题,对于新用户和新服装能够提供相对合理的推荐。同时,有效缓解数据稀疏问题,提高推荐的质量。并且能够较好地平衡推荐准确性和多样性之间的关系,使得推荐结果既能满足用户的个性化需求,又能让用户发现新的服装风格。
  • 形成相关的研究报告和技术文档
    • 撰写详细的研究报告,阐述系统的设计思路、实现过程、测试结果以及研究的创新点等。同时,整理出完整的技术文档,包括系统架构图、算法流程、数据库设计等内容,以便后续的系统维护和进一步的研究开发。

进度安排:

第 1 阶段:2022年6月底 完成选题及开题答辩

第 2 阶段:2022年7月可行性分析、需求分析、确定系统功能模块 

第 3 阶段:2022年8月-12月系统设计及实现,根据完成情况着手论文撰写

第 4 阶段:2023年1月中旬中期检查

第 5 阶段:2023年2月中旬完成系统测试

第 6 阶段:2023年3月底完成论文及论文检测

第 7 阶段:2023年4月作品验收及准备论文答辩

第 8 阶段:2023年5月中旬 论文答辩

参考文献:

[1]孟维成. 对基于Java语言实现数据库的访问研究[J]. 软件, 2022, 43 (02): 169-171.

[2]刘学玉. JAVA编程语言在计算机软件开发中的应用[J]. 电子技术与软件工程, 2022, (01): 57-60.

[3]杨鑫. 《Java程序设计》的软件开发实践能力教学资源建设[J]. 中国新通信, 2021, 23 (24): 64-65.

[4]朱姝. Java程序设计语言在软件开发中的运用初探[J]. 电子测试, 2021, (21): 72-74.

[5]祝明慧. 祝明慧. 零基础学Java程序设计[M]. 电子工业出版社: 202111. 448.

[6]赵子昂, 黄钧露. JAVA编程在计算机应用软件中的应用特征与技术研究[J]. 电子测试, 2021, (18): 83-84.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术+界面为准,可以酌情参考使用开题的内容。要源码参考请在文末进行获取!!

运行环境

开发工具:idea/eclipse/myeclipse

数据库:mysql5.7或8.0

操作系统:win7以上,最好是win10

数据库管理工具:Navicat10以上版本

环境配置软件: JDK1.8+Maven3.3.9

服务器:Tomcat7.0

技术栈

  1. 前端技术
    • 使用Vue.js框架构建用户界面,这是一个现代的前端JavaScript框架,能够帮助创建动态的、单页的应用程序。
  2. 后端技术
    • SSM框架:这是Spring、SpringMVC和MyBatis三个框架的整合,其中:
      • Spring负责业务对象的管理和业务逻辑的实现。
      • SpringMVC处理Web层的请求分发,将用户的请求指派给后端的控制器处理。
      • MyBatis作为数据持久层框架,负责与MySQL数据库的交互。
  3. 数据库技术
    • 使用MySQL作为关系型数据库管理系统,存储应用数据。
    • Navicat作为数据库可视化工具,方便进行数据库的管理、维护和设计。
  4. 开发环境和工具
    • JDK 1.8:Java开发工具包,用于编译和运行Java应用程序。
    • Apache Tomcat 7.0:作为Web应用服务器,用于部署和运行Web应用程序。
    • Maven 3.3.9:用于项目管理和构建自动化,它可以帮助您管理项目的构建、报告和文档。
  5. 开发流程
    • 使用Maven进行项目依赖管理和构建。
    • 开发时,前后端可以分离开发,前端通过Vue.js构建用户界面,并通过Ajax与后端进行数据交互。
    • 后端使用SSM框架进行业务逻辑处理和数据持久化操作。
    • 开发完成后,将前端静态文件部署到Tomcat服务器,后端代码也部署在Tomcat上,实现整个Web应用的运行。

程序界面:

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值