题意:模拟约瑟夫环。有N(1<=N<=500000)个孩子围成一圈,他们被顺时针编号为 1 到 N。每个小孩手中有一个卡片,上面有一个非 0 的数字,游戏从第 K 个小孩开始,他告诉其他小孩他卡片上的数字并离开这个圈,他卡片上的数字 A 表明了下一个离开的小孩,如果 A 是大于 0 的,则下个离开的是左手边第 A 个,如果是小于 0 的,则是右手边的第 A 个小孩。游戏将直到所有小孩都离开,在游戏中,第 p 个离开的小孩将得到 F(p) 个糖果,F(p) 是 p 的约数的个数,问谁将得到最多的糖果。输出最幸运的小孩的名字和他可以得到的糖果。
F(p)的值直接暴力跑一下就可以了。
因为A的值可能很大,所以会用到模运算,这就要求下标是从0开始,但是小孩的编号从1开始,所以在更新的时候,要考虑两者的转换,即从编号下标从1开始的,转换成编号下标从0开始的,再转换回去。
// Time 1563ms; Memory 24196K
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 1<<20
#define mm 500010
using namespace std;
int tmp[mm],d[mm],g[mm];
char s[mm][12];
int size,n,cnt,dx;
struct line
{
int l,r;
int m;
}a[maxn];
void init()
{
int i;
for(n=1;n<size;n<<=1);
for(i=n;i<2*n;i++)
{
a[i].l=a[i].r=i-n+1;
if(i-n<size) a[i].m=1;
else a[i].m=0;
}
for(i=n-1;i>0;i--)
{
a[i].l=a[2*i].l;
a[i].r=a[2*i+1].r;
a[i].m=a[2*i].m+a[2*i+1].m;
}
}
void insert(int i,int x)
{
if(a[i].l==a[i].r)
{
tmp[a[i].l-1]=++cnt;
a[i].m=0;
dx=a[i].l;
return;
}
if(a[2*i].m>=x) insert(2*i,x);
else insert(2*i+1,x-a[2*i].m);
a[i].m--;
}
void calu() //建表,得到约数个数
{
int i,j,limit;
limit=(int)sqrt(mm*1.0);
for(i=1;i<=limit;i++)
{
for(j=i+1;j*i<=mm;j++)
g[i*j]+=2;
g[i*i]++;
}
}
int main()
{
int i,k,y,p,mx;
calu();
while(scanf("%d%d",&size,&k)!=EOF)
{
init();
cnt=0;
memset(tmp,0,sizeof(tmp));
for(i=0;i<size;i++)
scanf("%s%d",s[i],&d[i]);
p=size;
for(;p;)
{
insert(1,k);
p--;
if(p==0) break;
if(d[dx-1]>0) k=((k-2+d[dx-1]%p)%p+p)%p+1; //得到要插入(删除)的是第几个
else k=((k-1+d[dx-1]%p)%p+p)%p+1;
}
mx=0;
for(i=0;i<size;i++)
{
if(g[tmp[mx]]<g[tmp[i]]) mx=i;
else if(g[tmp[mx]]==g[tmp[i]] && tmp[mx]>tmp[i]) mx=i;
}
printf("%s %d\n",s[mx],g[tmp[mx]]);
}
return 0;
}