POJ 2886 Who Gets the Most Candies? (线段树)

题意:模拟约瑟夫环。有N(1<=N<=500000)个孩子围成一圈,他们被顺时针编号为 1 到 N。每个小孩手中有一个卡片,上面有一个非 0 的数字,游戏从第 K 个小孩开始,他告诉其他小孩他卡片上的数字并离开这个圈,他卡片上的数字 A 表明了下一个离开的小孩,如果 A 是大于 0 的,则下个离开的是左手边第 A 个,如果是小于 0 的,则是右手边的第 A 个小孩。游戏将直到所有小孩都离开,在游戏中,第 p 个离开的小孩将得到 F(p) 个糖果,F(p) 是 p 的约数的个数,问谁将得到最多的糖果。输出最幸运的小孩的名字和他可以得到的糖果。
        F(p)的值直接暴力跑一下就可以了。

        因为A的值可能很大,所以会用到模运算,这就要求下标是从0开始,但是小孩的编号从1开始,所以在更新的时候,要考虑两者的转换,即从编号下标从1开始的,转换成编号下标从0开始的,再转换回去。

// Time 1563ms; Memory 24196K
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 1<<20
#define mm 500010

using namespace std;

int tmp[mm],d[mm],g[mm];
char s[mm][12];
int size,n,cnt,dx;

struct line
{
	int l,r;
	int m;
}a[maxn];

void init()
{
	int i;
	for(n=1;n<size;n<<=1);
	for(i=n;i<2*n;i++)
	{
		a[i].l=a[i].r=i-n+1;
		if(i-n<size) a[i].m=1;
		else a[i].m=0;
	}
	for(i=n-1;i>0;i--)
	{
		a[i].l=a[2*i].l;
		a[i].r=a[2*i+1].r;
		a[i].m=a[2*i].m+a[2*i+1].m;
	}
}
void insert(int i,int x)
{
	if(a[i].l==a[i].r)
	{
		tmp[a[i].l-1]=++cnt;
		a[i].m=0;
		dx=a[i].l;
		return;
	}
	if(a[2*i].m>=x) insert(2*i,x);
	else insert(2*i+1,x-a[2*i].m);
	a[i].m--;
}

void calu() //建表,得到约数个数
{
	int i,j,limit;
	limit=(int)sqrt(mm*1.0);
	for(i=1;i<=limit;i++)
	{
		for(j=i+1;j*i<=mm;j++)
			g[i*j]+=2;
		g[i*i]++;
	}
}
int main()
{
	int i,k,y,p,mx;
	calu();
	while(scanf("%d%d",&size,&k)!=EOF)
	{
		init();
		cnt=0;
		memset(tmp,0,sizeof(tmp));
		for(i=0;i<size;i++)
			scanf("%s%d",s[i],&d[i]);
		p=size;
		for(;p;) 
		{
			insert(1,k);
			p--;
			if(p==0) break;
			if(d[dx-1]>0) k=((k-2+d[dx-1]%p)%p+p)%p+1; //得到要插入(删除)的是第几个
			else k=((k-1+d[dx-1]%p)%p+p)%p+1;
		}
		mx=0;
		for(i=0;i<size;i++) 
		{
			if(g[tmp[mx]]<g[tmp[i]]) mx=i;
			else if(g[tmp[mx]]==g[tmp[i]] && tmp[mx]>tmp[i]) mx=i;
		}
		printf("%s %d\n",s[mx],g[tmp[mx]]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值