数据结构(1)——时间复杂度

前言:

1.什么是数据结构?

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的 数据元素的集合。

2.什么是算法?

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为 输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。例如:排序/二分查找

3.算法的时间复杂度和空间复杂度

  • 算法效率

  • 时间复杂度

  • 空间复杂度

  • 常见时间复杂度以及复杂度oj练习

1.算法效率 

1.1评价算法效率

我们写完一个程序的时候,如何衡量一个算法的好坏?例如使用斐波那契数列,斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度空间复杂度

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间

在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

例如:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
   int count = 0;
   for (int i = 0; i < N ; ++ i)
 {
   for (int j = 0; j < N ; ++ j)
   {
    ++count;
   }
 }

 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
int M = 10;
 while (M--)
 {
 ++count;
 }
printf("%d\n", count);
}

Func1 执行的基本操作次数 :F(N)=N*N+2*N+10

                           准确值                        估算值

  • N = 10       F(N) = 130                    100
  • N = 100     F(N) = 10210                10000
  • N = 1000   F(N) = 1002010            1000000

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。(也就是选取次数最高的项作为时间复杂度的结果),N越大,后面项对结果影响越小(也因此后面项可以忽略不计)

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数

2、在修改后的运行次数函数中,只保留最高阶项

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

 其中‘1’代表常数次 

 使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况(底线思维),所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例(下面题目就是答案,可以慢慢拉屏幕,思考一下)

例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)

例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)

 其中‘1’代表常数次

例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)

例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)

例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1;
}

实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)

ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(折纸分析)

再比如说暴力查找,这种查找方式的时间复杂度为O(N)那么与其对比O(logN)

N                                        1000               100w               10亿

暴力查找:O(N)            1000               100w               10亿

二分查找:O(logN)       10                   20                     30

因此从14亿(在2^30~2^31之间)人口查找一个人的信息最多需要31次

例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
 if(0 == N)
 return 1;

 return Fac(N-1)*N;
}

  实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 for(size_t i =0;i<N;i++)
 {
  //.....
 }
 return Fac(N-1)*N;
}

本示例对前面进行改动,基本操作递归了N次,但是每次递归里面有执行了N次循环,次数是根据N决定的,因此是Fac(N)时,执行次数为N,当Fac(N-1)时,执行次数为N-1...当Fac(2)时,执行次数为2,当Fac(1)时,执行次数为1,当Fac(0)时,执行次数为0;此时是等差数列求和,再化简得到O(N*N)

例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 if(N < 3)
 return 1;

 return Fib(N-1) + Fib(N-2);
}

实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。(建议画图递归栈帧的二叉树)

分析:左边是该行存在多少项(也就是函数被调用的次数)

用等比数列求和来计算最后的结果F(N)=2^(n-1)-1,因此时间复杂度为O(2^n)

 时间复杂度初步介绍到此,今后学习仍会穿插深入。

3.空间复杂度

1.空间复杂度概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用额外存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

例题1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

实例1使用了常数个额外空间,所以空间复杂度为 O(1)

例题2

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;

 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

实例2动态开辟(malloc)了N个空间,空间复杂度为 O(N)

例题3

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;

 return Fac(N-1)*N;
}

实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

例题4

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 if(N < 3)
 return 1;

 return Fib(N-1) + Fib(N-2);
}

时间是一区不复返的,时间是累计计算的;而空间是可以重复利用的,不需要累计计算。

在调用函数时,同时先最大限度开辟N层栈帧,每当从栈帧往前返回时会被销毁掉,而右边同一层的调用会重复用同一个栈帧,因此空间复杂度为O(N)

如图所示

2.补充:栈帧的销毁

1.栈帧空间说明:栈帧的销毁不是把空间真的销毁,栈帧的销毁(空间的销毁)应该是归还使用权!销毁的是内容!同时也注意栈帧的调用和销毁是分开进行的!

例如下面代码:

#include<stdio.h>
void Func1()
{
	int a = 0;
	printf("%p\n", &a);
}
void Func2()
{
	int b = 0;
	printf("%p\n", &b);
}
int main()
{
	Func1();
	Func2();
	return 0;
}

结果为:

结果表明两次函数调用使用的地址是一样的,也就是说栈帧开辟的空间都是在同一块空间

每次栈帧使用完后,栈帧被销毁(酒店的房间退房,但是房间还留着),之后右边数字(同一层的)需要调用函数,栈帧重新建立(其他人在这个房间重新开房)这样就能理解上面斐波那契例子中的栈帧的使用了。

2.同时栈帧是由高地址向低地址建立的

#include<stdio.h>
void Func1()
{
	int a = 0;
	printf("%p\n", &a);
}
void Func2()
{
	int b = 0;
	printf("%p\n", &b);
}
int main()
{
	int a = 0;
	printf("%p\n", &a);
	Func1();
	Func2();
	return 0;
}

输出结果:

4.复杂度的对比

一般算法的常见复杂度:

 5.复杂度的oj练习

1.消失的数字

​​​​​​跳转链接

 1.数组nums包含从0n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗?

注意:本题相对书上原题稍作改动

方法1:qsort排序(不满足题意,时间复杂度为O(N*logN))

思路:使用qsort排序,然后依次查找,如果下一个数不是上一个数+1,那么上一个数+1就是消失的数字。

//1.使用C语言库函数qsort()排序,这样数字就和数组下标相对应;
//2.然后遍历数组nums,用nums[ i+1 ] - nums[ i ] 判断,等于1表示两个数相邻,等于2表示缺失了的那个数;
//3.把对应的下标 i+1 输出即可
#include <stdio.h>
#include <stdlib.h>

int compare(const void *a, const void *b) {
    return (*(int*)a - *(int*)b);
}

int findMissingNumber(int nums[], int n) {
    qsort(nums, n, sizeof(nums[0]), compare);

    for (int i = 0; i < n - 1; i++) {
        if (nums[i + 1] - nums[i] > 1) {
            return nums[i] + 1;
        }
    }

    return n;
}

int main() {
    int nums[] = {1, 3, 0, 2, 5};
    int n = sizeof(nums) / sizeof(nums[0]);
    int missingNumber = findMissingNumber(nums, n);
    printf("Missing number: %d\n", missingNumber);

    return 0;
}

方法2:求和作差

思路:对完整的0-n求和后与缺失后的数组的和作差,得到的结果即为消失的数字

//等差数列求前n项和的公式为:Sn=n*(n+1)/2
//求完和之后,减去nums数组中的所有的值
int missingNumber(int* nums, int numsSize)
{
  size_t i=0;
  int x=numsSize*(1+numsSize)/2;
  for(i=0;i<numsSize;i++)
  {
      x-=nums[i];
  }
  return x;
}
//或者分别求和,然后相减,核心都是一样的

方法3:异或运算

思路:异或运算相同为0,0与任意数异或结果为任意数。

  • 0^x = x;
  • x^x = 0; 同样的数异或两次得到零
  • 异或满足交换律
//先异或[0,n]的所有数字将结果并入x中,再异或nums数字的所有数字进行抵消
int missingNumber(int* nums, int numsSize) {
    int x = 0;
    for (int i = 0; i < numsSize+1; i++)
    {
        x ^= i;//x^1^2^3....
    }
    for (int i = 0; i < numsSize; i++)
    {
        x ^= nums[i];//x^1^1^2^2^3....
    }
    return x;
}

另外还有哈希表的方法,暂时先不展示。

2.轮转数组

跳转链接

 2.给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

1.暴力求解,旋转k次

注意:这里如果k是n的话,就没必要旋转(所有数都旋转了一次)

void rotate(int* nums, int numsSize, int k){
if(k>=numsSize)
{
    k%=numsSize;
}
for(int i=1;i<=k;i++)
{
    int tmp=nums[numsSize-1];
    for(int s=numsSize-1;s>0;s--)
    {
        nums[s]=nums[s-1];
    }
    nums[0]=tmp;
}
}

时间复杂度为O(N^2),空间复杂度为O(1),(时间效率低)

2.三段逆置

void resever(int* nums,int left,int right)
{
    while(left<right)
    {
        int tmp=nums[right];
        nums[right]=nums[left];
        nums[left]=tmp;
        left++;
        right--;
    }
}

void rotate(int* nums, int numsSize, int k)
{
    if(k>=numsSize)
    {
    k%=numsSize;//k小于numsSize时,不会访问越界
    }
resever(nums,0,numsSize-k-1);//0,n-k-1
resever(nums,numsSize-k,numsSize-1);//n-k,n-1
resever(nums,0,numsSize-1);//0,n-1

}

时间复杂度为O(N);空间复杂度为O(1)

3.空间换时间

void rotate(int* nums, int numsSize, int k){
    int* tmp = (int*)malloc(sizeof(int) * numsSize);
    if(k>=numsSize)
    {
        k%=numsSize;
    }
	for(int i=0;i<k;i++)
    {
        tmp[i]=nums[numsSize-k+i];
    }
    for(int i=0;i<numsSize-k;i++)
    {
       tmp[i+k]=nums[i];
    }
    for(int i=0;i<numsSize;i++)
    {
        nums[i]=tmp[i];
    }
free(tmp);
}

或者

void rotate(int* nums, int numsSize, int k){
    if(k>numsSize)
    k %=numsSize;
    int *tmp=(int*)malloc(sizeof(int)*numsSize);
    memcpy(tmp+k,nums,sizeof(int)*(numsSize-k));
    memcpy(tmp,nums+numsSize-k,sizeof(int)*(k));
    memcpy(nums,tmp,sizeof(int)*numsSize);
    free(tmp);
    tmp=NULL;
}

时间复杂度为O(N),空间复杂度为O(N)

(本节完)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值