1. 下载JDK,安装部署JAVA环境。
(1)export JAVA_HOME=/home/xxx/jdk1.6.0_24
(2)export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
(3)export PATH=$JAVA_HOME/bin:$PATH
2. 设置ssh免登录
(1) 在机器A上执行ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa,这个命令会在.ssh文件夹下产生id_dsa和id_dsa.pub两个文件,这是ssh的一对私钥和公钥;
(2) 将A的公钥id_dsa.pub分发出去,比如要实现A到B的登录,则将A的公钥注册到B机器的autorized_keys中去;在A上执行cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys,因为本地也需要打通;在B上执行cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys,注意id_dsa.pub是A的公钥;
3. 下载解压hadoop-2.0.5-alpha,进入到hadoop-2.0.5-alpha/etc/hadoop做如下修改
其中core-env.sh,hdfs-env.sh,mapred-env.sh,yarn-env.sh中的java路径要改成目前使用的java路径。
(1) 修改core-site.xml,配置hdfs
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/usr/local/hadoop/tmp</value>
<description>Abase for other temporary directories.</description>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
(2) 将mapred-site.xml.template重命名为mapred-site.xml,配置为yarn模式<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration>
(3) 修改yarn-site.xml
<property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration>
(4) 修改hdfs-site.xml
<configuration> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>file:/usr/local/hadoop/tmp/dfs/name</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:/usr/local/hadoop/tmp/dfs/data</value> </property> </configuration>
(6) 启动hdfs
可以使用以下命令分别启动NameNode和DataNode
bin/hadoop namenode -format
sbin/hadoop-daemon.sh start namenode
sbin/hadoop-daemon.sh start datanode (如果有多个datanode,需要使用hadoop-daemons.sh)
或者一次启动:sbin/start-dfs.sh
(7) 启动yarn
可以使用以下命令分别启动ResourceManager和NodeManager
sbin/yarn-daemon.sh start resourcemanager
sbin/yarn-daemon.sh start nodemanager(若有多个nodemanager,需要使用yarn-daemons.sh)
或者一次启动:sbin/start-yarn.sh
如果启动 Hadoop 时遇到输出非常多“ssh: Could not resolve hostname xxx”的异常情况,如下图所示:
这个并不是 ssh 的问题,可通过设置 Hadoop 环境变量来解决。首先按键盘的 ctrl + c 中断启动,然后在 ~/.bashrc 中,增加如下两行内容(设置过程与 JAVA_HOME 变量一样,其中 HADOOP_HOME 为 Hadoop 的安装目录):
- export HADOOP_HOME=/usr/local/hadoop
- export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
保存后,务必执行 source ~/.bashrc
使变量设置生效,然后再次执行 ./sbin/start-dfs.sh
启动 Hadoop。
启动完成后,可以通过命令 jps
来判断是否成功启动,若成功启动则会列出如下进程: “NameNode”、”DataNode” 和 “SecondaryNameNode”(如果 SecondaryNameNode 没有启动,请运行 sbin/stop-dfs.sh 关闭进程,然后再次尝试启动尝试)。如果没有 NameNode 或 DataNode ,那就是配置不成功,请仔细检查之前步骤,或通过查看启动日志排查原因。
一般可以查看启动日志来排查原因,注意几点:
- 启动时会提示形如 “DBLab-XMU: starting namenode, logging to /usr/local/hadoop/logs/hadoop-hadoop-namenode-DBLab-XMU.out”,其中 DBLab-XMU 对应你的机器名,但其实启动日志信息是记录在 /usr/local/hadoop/logs/hadoop-hadoop-namenode-DBLab-XMU.log 中,所以应该查看这个后缀为 .log 的文件;
- 每一次的启动日志都是追加在日志文件之后,所以得拉到最后面看,对比下记录的时间就知道了。
- 一般出错的提示在最后面,通常是写着 Fatal、Error、Warning 或者 Java Exception 的地方。
- 可以在网上搜索一下出错信息,看能否找到一些相关的解决方法。
此外,若是 DataNode 没有启动,可尝试如下的方法(注意这会删除 HDFS 中原有的所有数据,如果原有的数据很重要请不要这样做):
- # 针对 DataNode 没法启动的解决方法
- ./sbin/stop-dfs.sh # 关闭
- rm -r ./tmp # 删除 tmp 文件,注意这会删除 HDFS 中原有的所有数据
- ./bin/hdfs namenode -format # 重新格式化 NameNode
- ./sbin/start-dfs.sh # 重启
成功启动后,可以访问 Web 界面 http://localhost:50070 查看 NameNode 和 Datanode 信息,还可以在线查看 HDFS 中的文件。
开启后通过 jps
查看,可以看到多了 NodeManager 和 ResourceManager 两个后台进程,如下图所示。
启动 YARN 之后,运行实例的方法还是一样的,仅仅是资源管理方式、任务调度不同。观察日志信息可以发现,不启用 YARN 时,是 “mapred.LocalJobRunner” 在跑任务,启用 YARN 之后,是 “mapred.YARNRunner” 在跑任务。启动 YARN 有个好处是可以通过 Web 界面查看任务的运行情况:http://localhost:8088/cluster,如下图所示。
但 YARN 主要是为集群提供更好的资源管理与任务调度,然而这在单机上体现不出价值,反而会使程序跑得稍慢些。因此在单机上是否开启 YARN 就看实际情况了。
如果不想启动 YARN,务必把配置文件 mapred-site.xml 重命名,改成 mapred-site.xml.template,需要用时改回来就行。否则在该配置文件存在,而未开启 YARN 的情况下,运行程序会提示 “Retrying connect to server: 0.0.0.0/0.0.0.0:8032” 的错误,这也是为何该配置文件初始文件名为 mapred-site.xml.template。