洛谷P1443 马的遍历

这是一个使用DFS(深度优先搜索)策略的算法问题,目标是计算在n×m的棋盘上,马从给定点(x,y)出发到达所有其他位置的最少步数。代码示例中展示了如何通过广度优先搜索(BFS)实现这一过程,初始化所有位置为不可达(-1),然后从起点开始逐步扩展可达区域,直到遍历完整个棋盘。
摘要由CSDN通过智能技术生成

题目描述

有一个 n×m 的棋盘,在某个点 (x, y)上有一个马,要求你计算出马到达棋盘上任意一个点最少要走几步。

输入格式

输入只有一行四个整数,分别为 n, m, x, y

输出格式

一个 n×m 的矩阵,代表马到达某个点最少要走几步(不能到达则输出-1)。

输入输出样例

输入 #1

3 3 1 1

输出 #1

0    3    2    

3    -1   1    

2    1    4    

说明/提示

数据规模与约定

对于全部的测试点,保证1≤xn≤4001≤ym≤400

思路:这是一个dfs类型的题目,要依次遍历每一个可以走到的位置,去计算该位置能找到的位置,并重复该行为,直至全部能走到的位置都已经遍历一次。

代码:

#include<bits/stdc++.h>
using namespace std;


const int n=400;

struct node{
	int x,y,step;
}que[n*n];//记录马的位置,以及走到这里的步数 


int main(){
	void bfs(int,int,int,int);
	int n,m,x,y;
	cin>>n>>m>>x>>y;
	bfs(x,y,n,m);

    return 0;
}
void bfs(int x1,int y1,int n,int m){
	int a[400][400]={};
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			a[i][j]=-1;//确保未经过的点步数输出为-1 
		}
	}
	a[x1][y1]=0;
	int head=0,tail=0;
	que[0].x=x1;
	que[0].y=y1;
	que[0].step=0;
	int ne[8][2]={2,1,2,-1,-2,1,-2,-1,1,2,1,-2,-1,2,-1,-2};//马能走到的8个位置 
	while(tail>=head){
		for(int i=0;i<8;i++){
			int tx=que[head].x+ne[i][0];
			int ty=que[head].y+ne[i][1];
			if(a[tx][ty]==-1&&tx>0&&tx<=n&&ty>0&&ty<=m){//确保不能超出边界 
				que[++tail].x=tx;
				que[tail].y=ty;
				que[tail].step=que[head].step+1;
				a[tx][ty]=que[head].step+1;
			}
		}
		head++;
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			printf("%d    ",a[i][j]);
		}
		printf("\n");
	}
	
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值