洛谷P3372 线段树 1

洛谷P3372 线段树 1

题目描述

如题,已知一个数列,你需要进行下面两种操作:

  1. 将某区间每一个数加上 k。
  2. 求出某区间每一个数的和。

输入格式

第一行包含两个整数 n, m,分别表示该数列数字的个数和操作的总个数。

第二行包含 n 个用空格分隔的整数,其中第 i 个数字表示数列第 i 项的初始值。

接下来 m 行每行包含 3 或 4 个整数,表示一个操作,具体如下:

  1. 1 x y k:将区间 [x, y]内每个数加上 k。
  2. 2 x y:输出区间 [x, y] 内每个数的和。

输出格式

输出包含若干行整数,即为所有操作 2 的结果。

输入输出样例

输入 #1

5 5

1 5 4 2 3

2 2 4

1 2 3 2

2 3 4

1 1 5 1

2 1 4

输出 #1

11

8

20

说明/提示

数据规模与约定

对于 30% 的数据:n≤8,m≤10。
对于 70% 的数据:n≤10^3,m≤10^4。
对于100% 的数据:1≤n,m≤10^5。

保证任意时刻数列中所有元素的绝对值之和≤10^18。

思路:线段树模板题,注意数据范围即可

代码:

#include<bits/stdc++.h>
using namespace std;

struct tt{
	int l,r;
	long long la,pre;
}t[400005];
int a[100005]={};

int len(int a){
	return t[a].r-t[a].l+1;
}
void lazy(int p){
	if(t[p].la>=1){
		t[p<<1].pre+=t[p].la*(len(p<<1));
		t[p<<1|1].pre+=t[p].la*(len(p<<1|1));
		t[p<<1].la+=t[p].la;
		t[p<<1|1].la+=t[p].la;
		t[p].la=0;
	}
}

void build(int p,int l,int r){
	t[p].l=l,t[p].r=r;
	if(l==r){
		t[p].pre=a[r];
		return ;
	}
	int mid=(l+r)>>1;
	build(p<<1,l,mid);
	build(p<<1|1,mid+1,r);
	t[p].pre=t[p<<1].pre+t[p<<1|1].pre;
}

void change(int p,int x,int y,int z){
	if(t[p].l>=x&&t[p].r<=y){
		t[p].pre+=(long long)z*(len(p));
		t[p].la+=z;
		return ;
	}
	lazy(p);
	int mid=(t[p].l+t[p].r)>>1;
	if(x<=mid)
		change(p<<1,x,y,z);
	if(y>mid)
		change(p<<1|1,x,y,z);
	t[p].pre=t[p<<1].pre+t[p<<1|1].pre;
}

long long query(int p,int x,int y){
	if(x<=t[p].l&&y>=t[p].r){
		return t[p].pre;
	}
	lazy(p);
	int mid=(t[p].l+t[p].r)>>1;
	long long ans=0;
	if(x<=mid){
		ans+=query(p<<1,x,y);
	}
	if(y>mid){
		ans+=query(p<<1|1,x,y);
	}
	return ans;
}

int main(){
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	build(1,1,n);
	while(m--){
		int x,y,k,t;
		cin>>t;
		if(t==1){
			cin>>x>>y>>k;
			change(1,x,y,k);
		}
		if(t==2){
			cin>>x>>y;
			printf("%lld\n",query(1,x,y));
		}
	}

    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有 $n$ 个点在数轴上,每个点有一个权值 $a_i$,你需要支持以下操作: - 修改一个点的权值。 - 给出 $l,r,k$,询问在区间 $[l,r]$ 中,权值严格大于 $k$ 的点的个数。 输入格式 第一行一个正整数 $n(1\leq n\leq 5\times10^5)$。 第二行 $n$ 个整数 $a_i(|a_i|\leq 10^9)$,表示每个点的权值。 第三行一个正整数 $m(1\leq m\leq 5\times10^5)$。 接下来 $m$ 行,每行一个操作,格式如下: - “Q l r k” 表示询问区间 $[l,r]$ 中,权值严格大于 $k$ 的点的个数。 - “C x y” 表示将第 $x$ 个点的权值修改为 $y$。 输出格式 对于每个询问操作,输出其结果。 输入样例 5 0 1 2 3 4 4 Q 2 5 3 C 4 6 Q 1 5 2 Q 3 4 4 输出样例 1 2 0 算法1 线段树(动态开点) 线段树的思想是把区间分成若干个小区间,每个小区间对应一段线段。对于每个线段,维护一些信息,例如区间和、区间最大值等等。 对于这道题目,我们可以按照值域线段树的思想,将区间对应到值域上。即将整个区间 $[0,n-1]$ 对应到值域上,建立一棵值域线段树。对于线段树上的每个节点,维护该节点对应的区间内权值大于某个值 $k$ 的点的个数。当然,对于叶子节点,该值就是 $0$ 或 $1$。 对于一个查询操作 $Q(l,r,k)$,需要在值域线段树上找到 $[l,r]$ 对应的区间,然后查询该区间内权值大于 $k$ 的点的个数。这个可以通过线段树的区间查询操作实现。 对于一个修改操作 $C(x,y)$,需要在值域线段树上找到 $x$ 对应的叶子节点,然后修改该叶子节点的值为 $y$,然后向上更新整个线段树,直到根节点。 时间复杂度 对于每次修改和查询操作,都需要在值域线段树上查询或修改,时间复杂度是 $O(\log n)$。总时间复杂度是 $O(m\log n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值