题目描述:
给出一个正整数 𝑛,然后对这个数字一直进行下面的操作:如果这个数字是奇数,那么将其乘 3 再加 1,否则除以 2。经过若干次循环后,最终都会回到 1。经过验证很大的数字都可以按照这样的方式比变成 1,所以被称为“冰雹猜想”。例如当 𝑛 是 2020,变化的过程是 20→10→5→16→8→4→2→1。
根据给定的数字,验证这个猜想,并从最后的 1 开始,倒序输出整个变化序列。
输入格式
输入一个正整数 𝑛。
输出格式
输出若干个由空格隔开的正整数,表示从最后的 1 开始倒序的变化数列。
输入输出样例
输入
20
输出
1 2 4 8 16 5 10 20
解题思路:
很显然我们对于解决有关于一组数字的问题需要用到数组,因此我们可以定义一个足够大的数组a[10000]={0};意思是创建一个包含10000个元素的数组a,并将所有元素初始化为0。输入一个数字n,经过题目描述的操作,可用while循环进行代码描述,再将每一次经过whlie循环得出的一个值赋值给a[i],最后n都将会变成1,循环结束,a[i]赋值过程也结束。再将得到的a[i]逆向进行输出。
代码实现:
#include<iostream>
using namespace std;
int main()
{
int a[10000], i = 0, n;//i为数组下标
cin >> n;
while (n != 1)//没得到i=1,就继续循环
{
a[i] = n;//每一次循环的n赋值给数组a
if (n % 2 == 1)
n = n * 3 + 1;
else n = n / 2;
i++;
}
a[i] = 1;
for (int j = i; j >= 0; j--)//对数组a进行逆向输出
{
cout << a[j] << " ";
}
return 0;
}
说明:
此处我们使用c++,对于初学者只会c的可以认真看看,学着使用并能够用c++写出见到的代码,语言本质一样,只是语法的不同。