PyTorch批训练及优化器使用

一、PyTorch批训练

1. 概述

PyTorch提供了一种将数据包装起来进行批训练的工具——DataLoader。使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦。

import torch
import torch.utils.data as Data
  
torch.manual_seed(1) # 设定随机数种子
  
BATCH_SIZE = 5
  
x = torch.linspace(1, 10, 10)
y = torch.linspace(0.5, 5, 10)
  
# 将数据转换为torch的dataset格式
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
  
# 将torch_dataset置入Dataloader中
loader = Data.DataLoader(
  dataset=torch_dataset,
  batch_size=BATCH_SIZE, # 批大小
  # 若dataset中的样本数不能被batch_size整除的话,最后剩余多少就使用多少
  shuffle=True, # 是否随机打乱顺序
  num_workers=2, # 多线程读取数据的线程数
  )
  
for epoch in range(3):
  for step, (batch_x, batch_y) in enumerate(loader):
    print('Epoch:', epoch, '|Step:', step, '|batch_x:',
       batch_x.numpy(), '|batch_y', batch_y.numpy())
'''''
shuffle=True
Epoch: 0 |Step: 0 |batch_x: [ 6. 7. 2. 3. 1.] |batch_y [ 3.  3.5 1.  1.5 0.5]
Epoch: 0 |Step: 1 |batch_x: [ 9. 10.  4.  8.  5.] |batch_y [ 4.5 5.  2.  4.  2.5]
Epoch: 1 |Step: 0 |batch_x: [ 3.  4.  2.  9. 10.] |batch_y [ 1.5 2.  1.  4.5 5. ]
Epoch: 1 |Step: 1 |batch_x: [ 1. 7. 8. 5. 6.] |batch_y [ 0.5 3.5 4.  2.5 3. ]
Epoch: 2 |Step: 0 |batch_x: [ 3. 9. 2. 6. 7.] |batch_y [ 1.5 4.5 1.  3.  3.5]
Epoch: 2 |Step: 1 |batch_x: [ 10.  4.  8.  1.  5.] |batch_y [ 5.  2.  4.  0.5 2.5]
  
shuffle=False
Epoch: 0 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1.  1.5 2.  2.5]
Epoch: 0 |Step: 1 |batch_x: [ 6.  7.  8.  9. 10.] |batch_y [ 3.  3.5 4.  4.5 5. ]
Epoch: 1 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1.  1.5 2.  2.5]
Epoch: 1 |Step: 1 |batch_x: [ 6.  7.  8.  9. 10.] |batch_y [ 3.  3.5 4.  4.5 5. ]
Epoch: 2 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1.  1.5 2.  2.5]
Epoch: 2 |Step: 1 |batch_x: [ 6.  7.  8.  9. 10.] |batch_y [ 3.  3.5 4.  4.5 5. ]
'''

2. TensorDataset

 

  • classtorch.utils.data.TensorDataset(data_tensor, target_tensor)

    TensorDataset类用来将样本及其标签打包成torch的Dataset,data_tensor,和target_tensor都是tensor                                  3. DataLoader

  • 复制代码 代码如下:

  • classtorch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,num_workers=0, collate_fn=<function default_collate>, pin_memory=False,drop_last=False)

    dataset就是Torch的Dataset格式的对象;batch_size即每批训练的样本数量,默认为;shuffle表示是否需要随机取样本;num_workers表示读取样本的线程数。

    二、PyTorch的Optimizer优化器

    本实验中,首先构造一组数据集,转换格式并置于DataLoader中,备用。定义一个固定结构的默认神经网络,然后为每个优化器构建一个神经网络,每个神经网络的区别仅仅是优化器不同。通过记录训练过程中的loss值,最后在图像上呈现得到各个优化器的优化过程。

    代码实现:

    import torch
    import torch.utils.data as Data
    import torch.nn.functional as F
    from torch.autograd import Variable
    import matplotlib.pyplot as plt
    torch.manual_seed(1) # 设定随机数种子
      
    # 定义超参数
    LR = 0.01 # 学习率
    BATCH_SIZE = 32 # 批大小
    EPOCH = 12 # 迭代次数
      
    x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
    y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
      
    #plt.scatter(x.numpy(), y.numpy())
    #plt.show()
      
    # 将数据转换为torch的dataset格式
    torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
    # 将torch_dataset置入Dataloader中
    loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE,
                 shuffle=True, num_workers=2)
      
    class Net(torch.nn.Module):
      def __init__(self):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(1, 20)
        self.predict = torch.nn.Linear(20, 1)
      
      def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x
      
    # 为每个优化器创建一个Net
    net_SGD = Net()
    net_Momentum = Net()
    net_RMSprop = Net()
    net_Adam = Net() 
    nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
      
    # 初始化优化器
    opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
    opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
    opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
    opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
      
    optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
      
    # 定义损失函数
    loss_function = torch.nn.MSELoss()
    losses_history = [[], [], [], []] # 记录training时不同神经网络的loss值
      
    for epoch in range(EPOCH):
      print('Epoch:', epoch + 1, 'Training...')
      for step, (batch_x, batch_y) in enumerate(loader):
        b_x = Variable(batch_x)
        b_y = Variable(batch_y)
      
        for net, opt, l_his in zip(nets, optimizers, losses_history):
          output = net(b_x)
          loss = loss_function(output, b_y)
          opt.zero_grad()
          loss.backward()
          opt.step()
          l_his.append(loss.data[0])
      
    labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
      
    for i, l_his in enumerate(losses_history):
      plt.plot(l_his, label=labels[i])
    plt.legend(loc='best')
    plt.xlabel('Steps')
    plt.ylabel('Loss')
    plt.ylim((0, 0.2))
    plt.show()

    实验结果:

    由实验结果可见,SGD的优化效果是最差的,速度很慢;作为SGD的改良版本,Momentum表现就好许多;相比RMSprop和Adam的优化速度就非常好。实验中,针对不同的优化问题,比较各个优化器的效果再来决定使用哪个。

    三、其他补充

    1. Python的zip函数

    zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表。

    x = [1, 2, 3]
    y = [4, 5, 6]
    z = [7, 8, 9]
    xyz = zip(x, y, z)
    print xyz
    [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
      
    x = [1, 2, 3]
    x = zip(x)
    print x
    [(1,), (2,), (3,)]
      
    x = [1, 2, 3]
    y = [4, 5, 6, 7]
    xy = zip(x, y)
    print xy
    [(1, 4), (2, 5), (3, 6)]
    torch.optim.SGD(params, lr=<object object>, momentum=0, dampening=0, weight_decay=0, nesterov=False)


    1 实现随机梯度下降算法( momentum 可选) 
    Args: 
    params(iterable): 待优化的迭代参数或者是定义了参数组的 dict eg: model.parameters() 
    lr (float): 学习率 
    dampening(float, optional): 动量的抑制因子 (默认值: 0) 
    weight_decay(float, optional): 权重衰减 (L2 正则化) (默认值: 0) 
    nesterov (bool, optional): 使用 Nesterov 动量 (默认值: False)

    torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False)


    实现 RMSprop 算法. 
    Args: 
    alpha(float, optional): 平滑常量 (default: 0.99) 
    eps(float, optional): 为了增加数值计算的稳定性而加到分母里的项 (默认值: 1e-8) 
    centered (bool, optional) : 如果为 True, 计算 RMSProp 的中值, 并且用它的方差预测值对梯度进行归一化

  • torch.optim.Adamax(params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

    实现 Adamax 算法 ( Adam 的一种基于无穷范数的变种). 
    Args: 
    betas (Tuple[float, float], optional): 用来计算梯度和平方梯度的系数

  •  参考链接:https://blog.csdn.net/Prayer_08/article/details/82082194

  •                    http://m.php.cn/article/394629.html

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: CTPN(Connectionist Text Proposal Network)是一种用于文本检测的深度学习模型。要训练CTPN,需要以下步骤: 1. 数据准备:收集大量的文本图像,标注每个图像中的文本区域和对应的字符框。可以使用工具如LabelImg来进行标注。 2. 数据预处理:将图像和标注转换为模型可以理解的格式。一般来说,需要将图像进行缩放、裁剪和归一化处理,将标注转换为文本区域的坐标和对应的字符框的坐标。 3. 构建模型:使用PyTorch框架构建CTPN模型。一般来说,可以使用现有的预训练模型进行微调,也可以从头开始构建模型。 4. 训练模型:使用训练数据集对模型进行训练训练过程中,可以使用优化器如Adam或SGD来调整模型参数,使用损失函数如交叉熵损失函数来评估模型性能。 5. 测试模型:使用测试数据集对训练好的模型进行测试,评估模型的性能指标如准确率、召回率和F1值。 6. 模型优化:根据测试结果对模型进行优化,调整模型参数或结构,提高模型性能。 以上是训练CTPN的一般步骤,具体实现需要根据具体问题和数据集进行调整。 ### 回答2: PyTorch CTPN(Connectionist Text Proposal Network)是一种基于深度学习的文本检测模型,用于文字检测和识别。下面是关于PyTorch CTPN训练的一些回答。 PyTorch CTPN模型的训练过程可以简单地分为以下几个步骤: 1. 数据预处理:首先,需要准备一些标注好的数据集,其中包含了图像中文本的位置标签。然后,对这些图像进行预处理,例如调整图像大小、归一化图像尺度等。 2. 网络设计:接下来,需要设计CTPN模型的网络结构。PyTorch提供了丰富的神经网络组件和API,可以方便地搭建模型。CTPN模型通常由特征提取网络和文本检测网络组成。 3. 损失函数定义:定义合适的损失函数对模型进行训练是很重要的。对于CTPN模型,常用的损失函数有平滑L1损失、交叉熵损失等。这些损失函数可以帮助模型学习到正确的文本位置和类别预测。 4. 模型训练:在PyTorch中,可以使用自定义的数据加载器将数据输入到模型中。通过迭代训练数据以及使用反向传播算法,可以逐步更新模型的权重参数,使其逐渐收敛到最佳状态。 5. 参数调优和模型评估:训练过程中,可以使用一些优化算法(如随机梯度下降)对模型的超参数进行调优,以进一步提升模型的性能。此外,可以使用一部分数据集进行模型评估,计算模型在文本检测和识别任务上的准确率、召回率等评价指标。 在训练过程中,还可以使用一些技巧来提升模型的性能,例如数据增强、学习率调整、模型融合等。 总之,PyTorch CTPN训练过程主要包括数据预处理、网络设计、损失函数定义、模型训练、参数调优和模型评估等步骤。通过这些步骤,可以训练出一个高性能的文本检测和识别模型。 ### 回答3: PyTorch CTPN是一种使用PyTorch框架进行训练的CTPN(Convolutional Text Proposal Network)模型。在训练CTPN之前,我们需要准备训练数据集和相应的标签。 首先,我们需要准备带有文本区域的图像数据集。这些图像可以是带有文本的自然场景图像或合成的文本图像。然后,我们需要为每个文本区域标注一个位置和文本的标签。标签可以是一个二值的文本/非文本标签,用于指示区域是否包含文本。 接下来,我们可以开始训练CTPN模型。在训练之前,我们需要定义网络的结构和超参数,如学习率、损失函数等。我们可以使用训练的模型作为基础网络,并根据我们的需求进行微调。 在训练过程中,我们将输入图像送入CTPN模型,并将预测的文本区域与真实的文本区域进行比较。我们使用定位损失函数(如SmoothL1Loss)来度量预测区域和真实区域之间的差异,并使用分类损失函数(如交叉熵损失)来度量预测区域是否为文本区域。通过将定位损失和分类损失相结合,我们可以计算出总体的损失。然后,我们使用反向传播算法来更新网络的权重,以最小化损失函数。 训练过程通常需要多次迭代,每次迭代使用一个小量的图像进行训练。我们可以使用优化器(如Adam)来自动调整学习率并更好地训练模型。 最后,当CTPN模型收敛并获得满意的性能,我们可以将模型保存下来以在新的图像上进行文本检测和定位。 总之,PyTorch CTPN训练是一个通过准备数据集、定义网络结构和超参数、使用损失函数和优化器进行迭代训练的过程,以实现文本检测和定位的模型训练过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值