用numpy与pytorch分别实现两层简单神经网络

用numpy实现两层神经网络

一个全连接ReLU神经网络,一个隐藏层,没有bias。用来从x预测y,使用L2 Loss。

  • ℎ=𝑊1𝑋h=W1X
  • 𝑎=𝑚𝑎𝑥(0,ℎ)a=max(0,h)
  • 𝑦ℎ𝑎𝑡=𝑊2𝑎yhat=W2a

这一实现完全使用numpy来计算前向神经网络,loss,和反向传播。

  • forward pass
  • loss
  • backward pass

 numpy实现:

import numpy as np
N,D_in,H,D_out = 64,1000,100,10 #64个数,1000维的输入,100个隐层,10维输出
#把1000维降到10维输出
#随机创建一些训练数据
x = np.random.randn(N,D_in)
y = np.random.randn(N,D_out)
#降维
w1 = np.random.randn(D_in,H)
w2 = np.random.randn(H,D_out)
#学习率
learning_rate = 1e-6
#训练500次
for t in range(500):
    #Forward
    h = x.dot(w1) #N*H
    h_relu = np.maximum(h,0)
    y_pred = h_relu.dot(w2) #N*D_out
    # compute loss
    loss = np.square(y_pred-y).sum() #均方误差
    print(t,loss)
    #Backward pass
    #compute the gradient
    #求导
    grad_y_pred = 2.0 * (y_pred-y)
    grad_w2 = h_relu.T.dot(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h<0] = 0
    grad_w1 = x.T.dot(grad_h)
    # update weights of w1 and w2
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

结果:

 pytorch实现:

import torch
#pytorch实现过程
N,D_in,H,D_out = 64,1000,100,10 #64个数,1000维的输入,100个隐层,10维输出
#把1000维降到10维输出
#随机创建一些训练数据
x = torch.randn(N,D_in)
y = torch.randn(N,D_out)
#降维
w1 = torch.randn(D_in,H)
w2 = torch.randn(H,D_out)
#学习率
learning_rate = 1e-6
for t in range(500):
    #Forward
    h = x.mm(w1) #N*H
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2) #N*D_out
    # compute loss
    loss = (y_pred-y).pow(2).sum().item() #均方误差
    print(t,loss)
    #Backward pass
    #compute the gradient
    #求导
    grad_y_pred = 2.0 * (y_pred-y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h<0] = 0
    grad_w1 = x.t().mm(grad_h)
    # update weights of w1 and w2
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

结果:

PyTorch: Tensor和autograd

PyTorch的一个重要功能就是autograd,也就是说只要定义了forward pass(前向神经网络),计算了loss之后,PyTorch可以自动求导计算模型所有参数的梯度。

一个PyTorch的Tensor表示计算图中的一个节点。如果x是一个Tensor并且x.requires_grad=True那么x.grad是另一个储存着x当前梯度(相对于一个scalar,常常是loss)的向量。

import torch

dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# N 是 batch size; D_in 是 input dimension;
# H 是 hidden dimension; D_out 是 output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# 创建随机的Tensor来保存输入和输出
# 设定requires_grad=False表示在反向传播的时候我们不需要计算gradient
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)

# 创建随机的Tensor和权重。
# 设置requires_grad=True表示我们希望反向传播的时候计算Tensor的gradient
w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    # 前向传播:通过Tensor预测y;这个和普通的神经网络的前向传播没有任何不同,
    # 但是我们不需要保存网络的中间运算结果,因为我们不需要手动计算反向传播。
    y_pred = x.mm(w1).clamp(min=0).mm(w2)

    # 通过前向传播计算loss
    # loss是一个形状为(1,)的Tensor
    # loss.item()可以给我们返回一个loss的scalar
    loss = (y_pred - y).pow(2).sum()
    print(t, loss.item())

    # PyTorch给我们提供了autograd的方法做反向传播。如果一个Tensor的requires_grad=True,
    # backward会自动计算loss相对于每个Tensor的gradient。在backward之后,
    # w1.grad和w2.grad会包含两个loss相对于两个Tensor的gradient信息。
    loss.backward()

    # 我们可以手动做gradient descent(后面我们会介绍自动的方法)。
    # 用torch.no_grad()包含以下statements,因为w1和w2都是requires_grad=True,
    # 但是在更新weights之后我们并不需要再做autograd。
    # 另一种方法是在weight.data和weight.grad.data上做操作,这样就不会对grad产生影响。
    # tensor.data会我们一个tensor,这个tensor和原来的tensor指向相同的内存空间,
    # 但是不会记录计算图的历史。
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad

        # Manually zero the gradients after updating weights
        w1.grad.zero_()
        w2.grad.zero_()

PyTorch: nn

这次我们使用PyTorch中nn这个库来构建网络。 用PyTorch autograd来构建计算图和计算gradients, 然后PyTorch会帮我们自动计算gradient

 

import torch
N,D_in,H,D_out = 64,1000,100,10
x = torch.randn(N,D_in)
y = torch.randn(N,D_out)
model = torch.nn.Sequential(
    torch.nn.Linear(D_in,H), #w_1 * x+ b_1
    torch.nn.ReLU(),
    torch.nn.Linear(H,D_out),
)
#模型初始化两层
# torch.nn.init.normal_(model[0].weight)
# torch.nn.init.normal_(model[2].weight)

loss_fn = torch.nn.MSELoss(reduction="sum")
learing_rate = 1e-4
for it in range(500):
    #Forward pass
    y_pred = model(x)
    #compute loss
    loss = loss_fn(y_pred,y)
    print(it,loss.item())
    #清零grad否则会叠加
    model.zero_grad()
    #Backward pass
    loss.backward()
    #update  weights of w1 and w2
    with torch.no_grad():
        for param in model.parameters():
            param -= learing_rate * param.grad

PyTorch: optim

这一次我们不再手动更新模型的weights,而是使用optim这个包来帮助我们更新参数。 optim这个package提供了各种不同的模型优化方法,包括SGD+momentum, RMSProp, Adam等等。

发现后面的精度越高损失的精度也会变小,初始化的模型加上效果会差,确实很玄学。

import torch
N,D_in,H,D_out = 64,1000,100,10
x = torch.randn(N,D_in)
y = torch.randn(N,D_out)
model = torch.nn.Sequential(
    torch.nn.Linear(D_in,H), #w_1 * x+ b_1
    torch.nn.ReLU(),
    torch.nn.Linear(H,D_out),
)
#模型初始化两层
# torch.nn.init.normal_(model[0].weight)
# torch.nn.init.normal_(model[2].weight)

loss_fn = torch.nn.MSELoss(reduction="sum")
learing_rate = 0.000041111
#定义优化函数
optimizer = torch.optim.Adam(model.parameters(),lr=learing_rate)
for it in range(500):
    #Forward pass
    y_pred = model(x)
    #compute loss
    loss = loss_fn(y_pred,y)
    print(it,loss.item())
    #清零grad否则会叠加
    optimizer.zero_grad()
    #Backward pass
    loss.backward()
    #update  weights of w1 and w2
    optimizer.step()

PyTorch: 自定义 nn Modules

我们可以定义一个模型,这个模型继承自nn.Module类。如果需要定义一个比Sequential模型更加复杂的模型,就需要定义nn.Module模型。

import torch
N,D_in,H,D_out = 64,1000,100,10
x = torch.randn(N,D_in)
y = torch.randn(N,D_out)
class TwoLayerNet(torch.nn.Module):
    def __init__(self,D_in,H,D_out):
        super(TwoLayerNet, self).__init__()#初始化
        self.linear1 = torch.nn.Linear(D_in,H,bias=False)
        self.linear2 = torch.nn.Linear(H,D_out,bias=False)
    def forward(self,x):
        y_pred = self.linear2(self.linear1(x).clamp(min=0))
        return y_pred
model = TwoLayerNet(D_in,H,D_out)
loss_fn = torch.nn.MSELoss(reduction="sum")
learing_rate = 1e-4
#定义优化函数
optimizer = torch.optim.Adam(model.parameters(),lr=learing_rate)
for it in range(500):
    #Forward pass
    y_pred = model(x)
    #compute loss
    loss = loss_fn(y_pred,y)
    print(it,loss.item())
    #清零grad否则会叠加
    optimizer.zero_grad()
    #Backward pass
    loss.backward()
    #update  weights of w1 and w2
    optimizer.step()

 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值