- 博客(18)
- 收藏
- 关注
原创 AttributeError: ‘int‘ object has no attribute ‘backward‘
深度学习代码损失,常会遇到如果发生什么条件,我们就返回一个预设值的情况,比如:在我的人体姿态估计网络中,如果该张图没有人体实例,我就不返回不更新梯度,损失为0.
2023-10-17 17:31:04 489
原创 Linux解压zip大文件报错:End-of- xx signature not found
安装7zip 进行解压。如果没安装sudo,则。如果还不行,卸载重新装。
2023-07-20 10:24:12 410
原创 使用VScode ssh密钥连接远程服务器提示Permissions are too open
报错信息:Permissions for ‘xxx(密钥文件)’ are too open. It is required that your private key files are NOT accessible by others. This private key will be ignored.这是因为本地的私钥文件给权限给其他用户导致的。将私钥文件的所有者用户除了自己以外全部删掉。
2023-05-24 15:19:24 1326
原创 from PIL import Image 后importError: DLL load failed: 找不到指定的模块
检查运行时环境配置是否符合所需的依赖关系。例如,如果您使用的是 Windows 操作系统,可以从 Microsoft 官方网站下载和安装相关的 Visual Studio 运行时环境。检查您所使用的 Python 版本是否正确。例如,如果您在 Python 3.x 上使用 Pillow,需要安装与您所使用的 Python 版本兼容的 Pillow 库。检查所安装的 Pillow 库与操作系统、Python 版本等兼容。注意不同的操作系统有可能需要额外的配置或者不兼容某些 Pillow 版本。
2023-05-19 11:49:49 154
原创 Mobaxterm隧道解决Pycharm无法远程连接内网服务器问题
我们实验室服务器只能通过校园内网连接,在校外只能通过学校vpn访问学校服务器资源,登录校园vpn后,Mobaxterm能够正常访问服务器,Pycharm不能。询问了同学后,发现这是因为我们的远程服务器与本地存在防火墙,防火墙只允许通过ssh端口,为访问远程服务器,我们可以借助MobaXterm来与SSH服务器建立隧道,使得防火墙外的用户能够访问远程服务器。然后在Pycharm的SSH configurations配置。先找到你登录学校vpn后的虚拟ip地址:xxxx。创建成功后,启动tunnel。
2023-01-04 14:49:47 1724 5
原创 【torch.max】TypeError: expected Tensor as element 1 in argument 0, but got torch.return_types.max
我遇到该报错原因是,torch.max函数返回值包含两个:第一个是max的tensor,第二个是max值的位置index.返回的最大值和索引各是一个tensor,分别表示该维度的最大值,以及该维度最大值的索引,一起构成元组(Tensor, LongTensor)实际上这是一个max返回值认知不清的误区。可以获取最大值索引tensor。可以获取最大值tensor。
2022-12-19 18:59:22 3158 2
原创 RuntimeError: All input tensors must be on the same device.解决方案
在我的代码中我遇到这种情况一般都是在torch.cat的时候。
2022-12-16 16:01:18 820
原创 Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human
.在人体姿态估计这类关键点估计任务当中,基于热图回归的方法是目前最主要最热门的方法,尽管其受限于显著的缺陷:即热图本身受限于一种量化误差且其生成和后处理需要大量的计算开销。为了去找到一种更为有效的解决方案,本文提出了将单独关键点以及一组空间关联的关键点作为目标进行建模的方法,该方法使用了一种密集的单阶段基于锚的检测框架。因此,作者将该方法命名为KAPAO,将关键点和姿态作为目标。
2022-11-17 18:17:48 653 1
原创 【论文阅读】Poseur: Direct Human Pose Regression with Transformers
本文提出了一种直接基于回归的2D人体姿态估计方法,将2D人体姿态估计问题表述为一个序列预测任务,用Transformer网络解决。该网络能够直接学习图像到关键点坐标的直接回归映射而不需要热图表征。该方法避免了基于热图方法的复杂性,为了克服以往基于回归方法中的特征错位问题,作者提出了一种注意力机制以此自适应地学习关注到与目标关键点最相关的特征,大大提高了模型精度。更重要的是,该框架是端到端可微的,能够自然地学习到关键点之间的依赖关系。实验表明在两个主要的数据集上都有着很好的效果,且是第一个超过基于热图方法性能
2022-11-02 11:35:40 518 2
原创 Python 下标循环list.remove()或者pop()后 list index out of range问题
假设,我们遇到用index遍历list,移除list当中某个元素的情况,如果将索引放入for循环条件中,会出现溢出,这是因为当我们移除了相应的元素后,list长度-1,且后面的元素index相应-1。因此,remove后的i不应该加1。可使用while循环或者i-1方式解决。
2022-10-28 10:12:31 917
原创 [论文阅读]Contextual Instance Decoupling for Robust Multi-Person Pose Estimation
拥挤场景使得定位不同人体关键点具有挑战性。本文提出了一种上下文实例解耦(CID,Contextual Instance Decoupling)的新多人姿态估计管道(pipeline)。CID不再依赖于人的边界框去空间上区分人。CID将图像中的人体解耦到多个实例感知的特征图中,每个特征图都用来为具体的人体实例推断关键点。与包含边界框检测的方法对比,CID具有可微性和对检测错误具有鲁棒性。将各人体实例解耦到不同的特征图可以隔离各人体实例之间的干扰,并且能够在大于边界框范围的尺度上获取上下文线索。
2022-10-26 12:01:03 1260 1
原创 The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation
本文提出了一种利用人体中心点分组,基于注意力机制的框架从一组未划分人体实例的关键点与人体中心点坐标预测估计人体姿态。该方法使用了transformer来获取所有检测到的关键点和中心点的上下文感知嵌入以此直接进行关键点分组。目前的大多数自底向上方法依赖于推理过程中不参与网络训练的聚类操作,本文方法使用了一种完全不同于之前聚类操作的注意力机制进行关键点分组,以此将分组操作与关键点检测一起端到端训练,该方法再提升精度同时具有更快的推理性能。
2022-10-21 11:56:42 537
原创 [论文阅读]Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
该论文关注的是的是自底向上的关键点回归人体姿态估计,作者认为回归关键点坐标的特征必须集中注意到关键点周围的区域,才能够精确回归出关键点坐标。因此了一种名为解构式关键点回归(DEKR)的方法。这种直接回归坐标的方法超过了以前的关键点热度图检测并组合的方法,并且在 COCO 和 CrowdPose 两个数据集上达到了目前自底向上姿态检测的最好结果。
2022-10-20 11:49:53 477 2
原创 TypeError: empty() received an invalid combination of arguments
TypeError: empty() received an invalid combination of arguments
2022-10-20 10:57:03 2990
原创 FCPose: Fully Convolutional Multi-Person Pose Estimation with Dynamic Instance-Aware Convolutions
本文提出了一个具有动态实例感知卷积的全卷积多人姿态估计网络框架。不同于现有方法通常需要ROI或者后处理分组操作,FCPose使用动态实例关键点估计头部消除了这些操作。该动态关键点头部以每个人体实例为基准条件,将这些实例信息编码到动态卷积的权重当中。由于动态卷积的表征能力强,FCPose中的关键点头部设计得非常紧凑,使得该网络框架推理快速且推理速度相对推理人数具有鲁棒性。FCpose能够比其他SOTA方法达到更好得精度、速度上的平衡。实验结果表明,FCPose也是一种简单搞笑的多人姿态估计框架。
2022-10-17 21:51:22 903
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人