基于django的人脸检测web平台搭建(Python3+Opencv,windows平台,内含代码)

现在很多“大厂”均提供基于AI的开放平台,以web的形式对外提供AI服务(人脸识别、OCR识别、语音识别等)。以人脸检测为例,用户通过特定的api接口上传需要检测的照片,然后web服务器对照片进行人脸检测,并将检测结果返回给用户。采用这种web部署人工智能产品的好处在于AI算法往往需要较多的配置、较高的服务器性能才能进行算法推演,这种方式使得管理员只需要管理和配置服务器即可,不需要再关注用户PC的配置和性能。另外,AI算法的更新也只需要在服务器上进行即可,适合生产环境的快速部署(小步快跑,快速迭代)。

本教程拟模仿上述流程,通过django框架搭建一个人脸检测web平台,以api接口形式对外提供服务。这里为了简单,只使用opencv提供的现成的人脸检测算法来进行检测,实际情况下可以根据服务器配置(GPU性能)采用更高级的人脸检测算法(例如基于深度学习的MTCNN人脸检测算法等)来提高检测精度。

开发环境

python 3.6  (安装教程:https://blog.csdn.net/qianbin3200896/article/details/81098498)

额外的python包和库:

pip install numpy
pip install django==1.11.14
pip install requests

另外,还需要安装opencv来进行人脸检测。opencv安装包下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv

这里由于使用的是python3.6版本,主机为64位win7系统,因此选择opencv_python‑3.4.5‑cp36‑cp36m‑win_amd64.whl进行下载和安装:

pip install opencv_python-3.4.5-cp36-cp36m-win_amd64.whl

开发

1.创建项目和应用

django-admin startproject facedetection

然后cd到项目根目录:

cd facedetection

下面创建一个应用:

python manage.py startapp app

最后,将新添加的app应用添加到项目中,打开facedetection子文件夹下的settings.py文件,找到其中的INSTALLED_APPS字段,再该字段末尾添加app应用:

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'app',#添加新的app应用
]

新添加的应用下面有多个文件,包括views.py、models.py等。由于我们需要开发基于rest-api的接口,因此大部分代码都会在views.py文件中编写。

2.  编写后台api接口

首先在views.py文件中导入一些库:

from django.shortcuts import render   # django的模板渲染包

### Initializing the imports
import numpy as np     # 矩阵运算
import urllib          # url解析
import json            # json字符串使用
import cv2             # opencv包
import os              # 执行操作系统命令
from django.views.decorators.csrf import csrf_exempt  # 跨站点验证
from django.http import JsonResponse   # json字符串返回

为了能够进行人脸检测,需要使用特定的人脸检测器,一般情况下需要运用机器学习算法进行训练得到,幸运的是Opencv自带高效的人脸检测器,可以无需训练直接拿来使用。在Opencv的安装目录中找到haarcascade_frontalface_default.xml,也可以从本教程最后提供的代码链接中获取得到。该xml文件定义了训练好的人脸特征检测器,只需要在Opencv中导入该文件即可进行人脸检测。为了方便项目使用,将该xml文件放置在项目根目录下(与manage.py文件同一目录)。

继续编辑views.py文件,添加代码如下:

face_detector = "haarcascade_frontalface_default.xml"  # 默认放置在项目根目录下

@csrf_exempt  #用于规避跨站点请求攻击
def facedetect(request):
    default = {"safely executed": False} #初始未执行

    #规定客户端使用POST请求上传检测图片
    if request.method == "POST":
        if request.FILES.get("image", None) is not None: #请求中包含图像则以流形式读取图像
            image_to_read = read_image(stream = request.FILES["image"])

        else: # 以URL形式读取图像
            url_provided = request.POST.get("url", None)
            if url_provided is None:
                default["error_value"] = "未提供URL路径"
                return JsonResponse(default)

            image_to_read = read_image(url = url_provided) #以url形式读取图像

        image_to_read = cv2.cvtColor(image_to_read, cv2.COLOR_BGR2GRAY) #彩色图像转灰度
        detector_value = cv2.CascadeClassifier(face_detector) #生成人脸检测器

        #进行人脸检测
        values = detector_value.detectMultiScale(image_to_read,
                                                 scaleFactor=1.1,
                                                 minNeighbors = 5,
                                                 minSize=(30,30),
                                                 flags = cv2.CASCADE_SCALE_IMAGE)

        #将检测得到的人脸检测关键点坐标封装
        values=[(int(a), int(b), int(a+c), int(b+d)) for (a,b,c,d) in values]

        default.update({"#of_faces": len(values),
                        "faces":values,
                        "safely_executed": True })

    return JsonResponse(default)

上述代码以POST请求方式处理请求,同时提供两种文件上传方式,一种就是以url形式提供,还有就是将图像内容封装在request的FILES中,然后解析得到。因此,也就需要两种读取图片的方式,这里额外编写了read_image函数用于处理,具体代码为:

def read_image(stream=None, url=None):

    if url is not None:
        response = urllib.request.urlopen(url)
        data_temp = response.read()

    elif stream is not None:
        data_temp = stream.read()

    image = np.asarray(bytearray(data_temp), dtype="uint8")
    image = cv2.imdecode(image, cv2.IMREAD_COLOR)
    return image

至此,视图函数已经处理完毕。接下来添加访问路由,打开facedetection子文件夹下的urls.py文件,添加路由:

from django.conf.urls import url
from django.contrib import admin
from app.views import facedetect  #导入人脸检测视图函数

urlpatterns = [
    url(r'^admin/', admin.site.urls),
    url(r'^facedetect/$', facedetect, name='facedetect'),   #添加对应的路由
]

最后启动项目:

python manage.py runserver

默认当前服务器运行在 http://127.0.0.1:8000/ 上。

3.  编写本地调用demo

下面以一个简单的python脚本为例,将本地的图片上传至服务器进行人脸检测,图片名为:temp.jpg。新建脚本test_run.py,代码如下:

import cv2, requests
url = "http://localhost:8000/facedetect/"  # web地址(http://localhost:8000)+访问接口(facedetect)

# 上传图像并检测

#tracker = {"url": "https://image.ibb.co/cPrdgS/image5.jpg"}
tracker = None
files = {
  "image":("filename2", open("temp.jpg", "rb"), "image/jpeg"),
}

req = requests.post(url,data=tracker,files=files).json()
print("temp.jpg: {}".format(req))

# 将检测结果框显示在图像上
image_to_read = cv2.imread("temp.jpg")
for (w,x,y,z) in req["faces"]:
    cv2.rectangle(image_to_read,(w,x), (y,z), (0, 255, 0), 2)

cv2.imshow("检测图像", image_to_read)
cv2.waitKey(0)

运行脚本:

python test_run.py

结果如下图所示:

上面代码提供了两种上传方式,一种是本地图片上传的方式,也是代码中使用的方式。还有一种就是直接传输图片的url路径,此时只需要将 requests.post中的files参数设置为None即可。

3.web在线调用

上面提供了一种本地调用接口的方式。本节讲解一种在线web调用的方式,即用户在网页上上传一张照片,然后单击提交即可在网页上实现人脸检测。这种方式可以方便的让用户无需编写任何脚本代码即可体验功能。首先来编写网页,在app文件夹下创建templates文件夹(不要修改该文件夹名字,因为django有自动搜索模板机制,以templates命名),然后在templates文件夹下创建一个index.html文件。编辑index.html文件如下:

{% load staticfiles %}
<!DOCTYPE html>
<html>

<head>
    <title>人脸检测平台</title>
    <script src="https://cdn.jsdelivr.net/npm/jquery@1.12.4/dist/jquery.min.js"></script>

    <script type="text/javascript">
        function ProcessFile(e) {
            var file = document.getElementById('file').files[0];
            if (file) {
                var reader = new FileReader();
                reader.onload = function (event) {
                    var txt = event.target.result;

                    var img = document.createElement("img");
                    img.src = txt; //将图片base64字符串赋值给img的src
                    document.getElementById("result").appendChild(img);                   
                };
            }
            reader.readAsDataURL(file);
        }
        function contentLoaded() {
            document.getElementById('file').addEventListener('change',
                ProcessFile, false);
        }
        window.addEventListener("DOMContentLoaded", contentLoaded, false);
    </script>
</head>

<body>
    请选取一个图像文件: <input type="file" id="file" name="file" />
    <div id="result"></div>

    <div id="result_new"></div>

    <img id="ewmtp" src="https://img-blog.csdnimg.cn/2022010618314630403.png" alt="Red dot" />
    

<div>
    <button type="button" class="btn btn-primary btn-lg" id="lgbut_compute">提交</button>
    </div>

    <script>
        function ShowResult(data) {
            var v = data['img64'];
            var img = document.createElement("img_new");
            img.src = "data:image/jpeg;base64, " + v;
            document.getElementById("result_new").appendChild(img);
            ewmtp.src = "data:image/jpeg;base64, " + v;
        }
    </script>
    <script>
        $('#lgbut_compute').click(function () {
            formdata = new FormData(); 
            var file = $("#file")[0].files[0];
            formdata.append("image", file);
            $.ajax({
                url: '/facedetectDemo/', //调用django服务器计算函数
                type: 'POST', //请求类型
                data: formdata,
                dataType: 'json', //期望获得的响应类型为json
                processData: false,
                contentType: false,
                success: ShowResult //在请求成功之后调用该回调函数输出结果
            })
        })
    </script>
</body>
</html>

该文件提供了输入组件让用户上传照片,当用户单击“提交”按钮时通过ajax技术将照片发送至服务器,然后根据回调函数ShowResult接收服务器返回的检测结果,最后将检测结果图像进行显示。在该过程中尤其需要注意图像的base64编码和使用。

接下来,为了管理方便,额外的编写后端接口,在views.py文件中添加代码如下:

def home(request):
    return render(request, 'index.html')

import base64
@csrf_exempt  #用于规避跨站点请求攻击
def facedetectDemo(request):
    default = {"safely executed": False} #初始未执行

    #规定客户端使用POST请求上传检测图片
    if request.method == "POST":
        if request.FILES.get('image') is not None: #请求中包含图像则以流形式读取图像
            image_to_read = read_image(stream = request.FILES["image"])
            
        else: # 返回错误说明
            default["error_value"] = "提交格式错误,无法解析到image图像"
            return JsonResponse(default)

        imgGray = cv2.cvtColor(image_to_read, cv2.COLOR_BGR2GRAY) #彩色图像转灰度
        detector_value = cv2.CascadeClassifier(face_detector) #生成人脸检测器

        #进行人脸检测
        values = detector_value.detectMultiScale(imgGray,
                                                 scaleFactor=1.1,
                                                 minNeighbors = 5,
                                                 minSize=(60,60),
                                                 flags = cv2.CASCADE_SCALE_IMAGE)

        #将检测得到的人脸检测关键点坐标封装
        values=[(int(a), int(b), int(a+c), int(b+d)) for (a,b,c,d) in values]

        #将检测框显示在原图上
        for (w,x,y,z) in values:
            cv2.rectangle(image_to_read,(w,x), (y,z), (0, 255, 0), 2)

        retval, buffer_img= cv2.imencode('.jpg', image_to_read) #在内存中编码为jpg格式
        img64 = base64.b64encode(buffer_img) #base64编码转换用于网络传输
        img64=str(img64, encoding='utf-8') #bytes转换为str类型
        default["img64"] = img64  #json封装
    return JsonResponse(default)

其中home函数用来显示首页,通过django的render函数将index.html模板文件进行渲染。接下来重点需要关注facedetectDemo函数,该函数是为了在线web调用而进行的人脸检测接口简化版本,其中大部分代码与facedetect函数一致,但是在返回结果时需要注意图像的编解码问题,即先将图像压缩编码成jpg格式,然后转化成base64方便网络传输,最后再转化成str类型封装成json字符串返回。

最后,添加对应的路由,打开urls.py文件,编辑代码如下:

from django.conf.urls import url
from django.contrib import admin
from app.views import facedetect,home,facedetectDemo

urlpatterns = [
    url(r'^admin/', admin.site.urls),
    url(r'^facedetect/$', facedetect, name='facedetect'), 
    url(r'^$', home, name='home'), 
    url(r'^facedetectDemo/$', facedetectDemo, name='facedetectDemo'), 
]

运行项目:

python manage.py runserver

在页面上上传图像,然后单击“提交”进行测试,最终效果图如下:

4.代码下载

最后给出部分代码链接:https://download.csdn.net/download/qianbin3200896/11094507

 

 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱彬 (Qian Bin)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值