Arrange
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
问题描述:
Cupid一不小心将爱情之箭射到了自己,他爱上了Psyche。
这引起了他的母亲Venus的注意。Venus将Psyche带到了一堆打乱的谷堆旁。
这儿共有 n n堆稻谷,编号为 1到 n。Psyche需要将这些谷堆以某种顺序排列,设最终排在第 ii位的谷堆是 Ai。
她得知了一些该排列的要求:
1. 对于任意整数i∈[1,n], A1 ,A2 ,...,Ai 的最小值为 Bi 。
2. 对于任意整数i∈[1,n], A1 ,A2 ,...,Ai 的最大值为 Ci 。
现在Psyche想知道,共有多少种合法的排列。由于答案可能很大,输出时对 998244353 取模。
输入描述:
第一行,一个整数 T (1≤T≤15),代表数据组数。
对于每组数据,第一行有一个整数 n (1≤n≤10e5),代表排列大小。
第二行, n n个整数,第 i i个整数为 Bi (1≤Bi ≤n)。
第三行, n n个整数,第 i i个整数为 Ci (1≤Ci ≤n)。
输出描述:
输出 T 行,对于每组数据输出答案对 998244353取模的结果。
输入样例:
2
3
2 1 1
2 2 3
5
5 4 3 2 1
1 2 3 4 5
输出样例:
1
0
Hint:
对于第一组数据,只有一种合法的排列 (2,1,3)。
对于第二组数据,没有合法的排列。
题意概括:
第一行输入t表示输入数据,每组数据第一行n,表示对1—n进行排序。接下来输入n个数b[n]表示排列中第i个数之前的最小值为b[i]。第三行n个数c[n],表示排列中第i个数之前的最大值为c[i]。
解题思路:
递推,排除掉6种不可能的情况,1、b[i]>b[i-1] 2、c[i]<c[i-1] 3、b[i]>c[i] 4、c[1]!=b[1] 5、b[i],c[i] < 1 || > n 6、c[i]>c[i-1] &&b[i]<b[i-1]两个条件同时满足时。然后递推,如果当前产生的新的 b[i]或者 c[i] 那么dp[i] = dp[i-1] ,如果当前 b[i-1] = b[i] && c[i-1] = c[i] ,那么我们可以在 [b[i],c[i]]中任选一个数,但是由于谷堆是互不相同的,所以每次我们的选项都会变少,弄个计数器计算一下当前已经选了多少种,减掉之后答案即为 dp[i] = dp[i-1]*(c[i]-b[i]+1-num)
bc官方给出的题解:
#include <iostream>
#include <stdio.h>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#define mod 998244353
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
int b[100015];//记录最小值(非递增)
int c[100015];//记录最大值(非递减)
LL dp[100015];//记录递推中间值
int main()
{
int T;
cin >> T;
int n;
while(T--)
{
int flag=1;
cin >> n;
cin >> b[1];
for(int i=2;i<=n;i++)
{
cin >> b[i];
if(b[i]>b[i-1]||b[i]<1||b[i]>n)//判断是否满足条件
flag=0;
}
cin >> c[1];
for(int i=2;i<=n;i++)
{
cin >> c[i];
if(c[i]<c[i-1]||c[i]<1||c[i]>n||c[i]<b[i])//判断是否满足条件
flag=0;
if(c[i]>c[i-1]&&b[i]<b[i-1])//判断是否满足条件
flag=0;
}
if(b[1]!=c[1])//b、c数组第一个元素不相等时不满足条件
flag=0;
if(flag==0)
{
cout << 0 << endl;
continue;
}
else
{
memset(dp,0,sizeof(dp));
int num=1;//记录(b[i],c[i])中被已经被用过的数字个数
dp[1]=1;
for(int i=2;i<=n;i++)
{
if(b[i]==b[i-1]&&c[i]==c[i-1])
dp[i]=dp[i-1]*(c[i]-b[i]+1-num)%mod;
//转移方程,中间过程c[i]-b[i]+1-num值可能为0。此时dp[]为0,所以不用再单独处理进行
else if((b[i]==b[i-1]&&c[i]>c[i-1])||(b[i]<b[i-1]&&c[i]==c[i-1]))
dp[i]=dp[i-1];//转移方程
num++;
}
cout << dp[n] << endl;
}
}
return 0;
}