排列组合|DP——树

82 篇文章 0 订阅

传送门

题解以DP的思路去理解的话就是,当一条dfs序上面的,子节点的父节点肯定已经涂过颜色了,而对于他的兄弟节点来说可能涂了也可能没有涂。所以对于当前结点的涂色就是涂和父节点一样的颜色或者不一样的颜色。那么状态转移方程式很容易就知道是 f ( i , j ) = f ( i − 1 , j ) + f ( i − 1 , j − 1 ) ∗ ( k − j + 1 ) f(i,j)=f(i-1,j)+f(i-1,j-1)*(k-j+1) f(i,j)=f(i1,j)+f(i1,j1)(kj+1)

#include<bits/stdc++.h>
#define int long long
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int N=305;
int fac[N],inv[N];
ll f[N][N];
signed main(){
    int n,k; cin>>n>>k;
    f[0][0]=1;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=k;j++){
            f[i][j]=(f[i-1][j]+f[i-1][j-1]*1LL*(k-j+1))%mod;
        }
    }
    ll res=0;
    for(int i=1;i<=k;i++) res+=f[n][i],res%=mod;
    cout<<res<<endl;
}

法二:
我们可以知道树就是一个无向联通图,我们要分成x个联通块就需要删除x-1条边。那么也就是 c a l ( n − 1 , x − 1 ) cal(n-1,x-1) cal(n1,x1)然后将k种颜色有序的分给这x个联通块也就是排列数。 A ( k , x ) A(k,x) A(k,x)

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod=1e9+7;
const ll maxn=310;
ll n,k,ans,inv[maxn],f[maxn];
ll C(ll x,ll y){
    return f[x]*inv[y]%mod*inv[x-y]%mod;
}
ll A(ll x,ll y){
    return f[x]*inv[x-y]%mod;
}
signed main(){
    ios::sync_with_stdio(false);
    cin>>n>>k;
    inv[0]=f[0]=inv[1]=f[1]=1;
    for(ll i=2;i<maxn;i++)
        inv[i]=((mod-mod/i)*inv[mod%i])%mod,f[i]=i;
    for(ll i=2;i<maxn;i++)
        inv[i]=(inv[i]*inv[i-1])%mod,f[i]=(f[i]*f[i-1])%mod;
    for(ll i=1;i<=k&&i<=n;i++)
        ans=(ans+(C(n-1,i-1)*A(k,i)%mod))%mod;
    cout<<ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值