传送门
题解以DP的思路去理解的话就是,当一条dfs序上面的,子节点的父节点肯定已经涂过颜色了,而对于他的兄弟节点来说可能涂了也可能没有涂。所以对于当前结点的涂色就是涂和父节点一样的颜色或者不一样的颜色。那么状态转移方程式很容易就知道是 f ( i , j ) = f ( i − 1 , j ) + f ( i − 1 , j − 1 ) ∗ ( k − j + 1 ) f(i,j)=f(i-1,j)+f(i-1,j-1)*(k-j+1) f(i,j)=f(i−1,j)+f(i−1,j−1)∗(k−j+1)
#include<bits/stdc++.h>
#define int long long
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int N=305;
int fac[N],inv[N];
ll f[N][N];
signed main(){
int n,k; cin>>n>>k;
f[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=k;j++){
f[i][j]=(f[i-1][j]+f[i-1][j-1]*1LL*(k-j+1))%mod;
}
}
ll res=0;
for(int i=1;i<=k;i++) res+=f[n][i],res%=mod;
cout<<res<<endl;
}
法二:
我们可以知道树就是一个无向联通图,我们要分成x个联通块就需要删除x-1条边。那么也就是
c
a
l
(
n
−
1
,
x
−
1
)
cal(n-1,x-1)
cal(n−1,x−1)然后将k种颜色有序的分给这x个联通块也就是排列数。
A
(
k
,
x
)
A(k,x)
A(k,x)
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod=1e9+7;
const ll maxn=310;
ll n,k,ans,inv[maxn],f[maxn];
ll C(ll x,ll y){
return f[x]*inv[y]%mod*inv[x-y]%mod;
}
ll A(ll x,ll y){
return f[x]*inv[x-y]%mod;
}
signed main(){
ios::sync_with_stdio(false);
cin>>n>>k;
inv[0]=f[0]=inv[1]=f[1]=1;
for(ll i=2;i<maxn;i++)
inv[i]=((mod-mod/i)*inv[mod%i])%mod,f[i]=i;
for(ll i=2;i<maxn;i++)
inv[i]=(inv[i]*inv[i-1])%mod,f[i]=(f[i]*f[i-1])%mod;
for(ll i=1;i<=k&&i<=n;i++)
ans=(ans+(C(n-1,i-1)*A(k,i)%mod))%mod;
cout<<ans;
return 0;
}