Tensorflow使用张量作为数据的基本单位。可以使用它来描述数学中的标量(0为数组)、向量(1维数组)、矩阵(2维数组)等各种量
import tensorflow as tf
#定义一个随机数(标量)
random_float = tf.random.uniform(shape=())
print("random_float:",random_float)
#定义一个有2个元素的零向量
zero_vector = tf.zeros(shape=(2))
print("zero_vector:",zero_vector)
A = tf.constant([[1.,2.],[3.,4.]])
B = tf.constant([[5.,6.],[7.,8.]])
print("A.shape:",A.shape)
print("A.dtype:",A.dtype)
print("A.numpy():",A.numpy())
结果
random_float: tf.Tensor(0.4030397, shape=(), dtype=float32) zero_vector: tf.Tensor([0. 0.], shape=(2,), dtype=float32) A.shape: (2, 2) A.dtype: <dtype: 'float32'> A.numpy(): [[1. 2.] [3. 4.]]