Tensorflow 张量

Tensorflow使用张量作为数据的基本单位。可以使用它来描述数学中的标量(0为数组)、向量(1维数组)、矩阵(2维数组)等各种量

import tensorflow as tf
#定义一个随机数(标量)
random_float = tf.random.uniform(shape=())
print("random_float:",random_float)
#定义一个有2个元素的零向量
zero_vector = tf.zeros(shape=(2))
print("zero_vector:",zero_vector)

A = tf.constant([[1.,2.],[3.,4.]])
B = tf.constant([[5.,6.],[7.,8.]])
print("A.shape:",A.shape)
print("A.dtype:",A.dtype)
print("A.numpy():",A.numpy())

 

结果

random_float: tf.Tensor(0.4030397, shape=(), dtype=float32)
zero_vector: tf.Tensor([0. 0.], shape=(2,), dtype=float32)
A.shape: (2, 2)
A.dtype: <dtype: 'float32'>
A.numpy(): [[1. 2.]
 [3. 4.]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值