论文阅读笔记20230316

GREYONE: Data Flow Sensitive Fuzzing (SEC 2020)

数据流分析(Data Flow Analysis)被证明能够更好地辅助Fuzzer挖掘到深层的漏洞。但传统的污点分析(Taint Analysis)消耗人力、速度慢、不准确,严重影响了Fuzzing的效率,从一定程度上限制了数据流分析的应用。

本文提出了GreyOne,使用了一种FTI(Fuzzing-driven Taint Inference)技术,通过观察Fuzzing时变量值的变化来推测相应的污点。接下来通过相应的污点来决定走哪条分支以及如何变异。文中进一步使用了Constraint Conformance来增强Fuzzer的导向性。

GreyOne的架构如下图所示。
Architecture of GreyOne
论文代码未开源。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值