GREYONE: Data Flow Sensitive Fuzzing (SEC 2020)
数据流分析(Data Flow Analysis)被证明能够更好地辅助Fuzzer挖掘到深层的漏洞。但传统的污点分析(Taint Analysis)消耗人力、速度慢、不准确,严重影响了Fuzzing的效率,从一定程度上限制了数据流分析的应用。
本文提出了GreyOne,使用了一种FTI(Fuzzing-driven Taint Inference)技术,通过观察Fuzzing时变量值的变化来推测相应的污点。接下来通过相应的污点来决定走哪条分支以及如何变异。文中进一步使用了Constraint Conformance来增强Fuzzer的导向性。
GreyOne的架构如下图所示。
论文代码未开源。