ROC曲线/AUC值/PR曲线

本文介绍了二分类中的关键指标,包括TP、FP、FN和TN。接着详细解析了ROC曲线,它是通过假阳性率和真阳性率绘制的,用于评估模型的区分能力,AUC值表示ROC曲线下方的面积,反映了模型的风险区分能力。同时讨论了PR曲线,它关注精度和召回率的平衡,并提到了F1值。最后,还提及了KS曲线和洛伦兹曲线以及基尼系数在评估模型性能中的作用。
摘要由CSDN通过智能技术生成
二分类
  prediction  
fact True Positive False Negative TP+FN
False Positive True Negative FP+TN
  TP+FP FN+TN TP+FN+FP+TN
TP:预测为阳性,实际就是阳性(真阳性)
FP:预测为阳性,实际是阴性(假阳性)
FN:预测为阴性,实际是阳性(假阴性)
TN:预测为阴性,实际是阴性(真阴性)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值