💡 T检验是什么?
T检验是比较两组数据是否有差异的基本方法,
相信大多数人刚接触统计学时,第一个认识的就是它!
T检验常见的4种形式为:
-
独立样本T检验(参数)
-
非参数独立样本T检验
-
配对样本T检验(参数)
-
非参数配对样本T检验
📌 这里的“参数”指的是是否符合正态分布。
根据统计原则,样本量 > 30 或 正态检验通过 时,认为满足参数要求;否则应选择非参数方法。
👉 细分方法的选择将极大影响结果的可靠性(见图1)
✅ 01 独立样本 vs 配对样本
🔹 独立样本:
两组数据互不相关,每个个体只属于其中一组。
📍 典型场景:
-
两种不同治疗方法(如 A组吃药 vs B组不吃药)
-
男女两组对比(如 男性 vs 女性的平均身高)
-
不同班级对比(如 A班 vs B班 的学生成绩)
🔸 配对样本:
同一组个体在不同时间或条件下的重复测量,数据成对出现。
📍 典型场景:
-
实验前后对比(如 训练前后体重变化)
-
同一患者服用不同药物前后的指标
-
学生在两种复习策略下的成绩对比
📊 02 方法选择一览(图2)
不同数据类型、是否符合正态分布,对应的分析方法如下:
📌 快速判断用图2对照选择!
📈 03 结果解读 & 可视化
T检验结果的核心在于:p 值 < 0.05 = 差异显著
-
独立样本: 说明两组数据存在显著差异
-
配对样本: 表示两种处理方法之间存在差异
📊 通常会用箱线图来展示(见图3)
箱线图怎么看?
-
核心:看 p 值
-
其次:中位数线、上下须线、异常值只是辅助展示,不是重点
📌 04 结语
T检验适用于2组数据的对比。
如需比较2组以上的数据,就需要引入 多重比较 方法。
📍 多重比较将在下一篇详细讲解,敬请期待!
欢迎来访TomatoSCI