TomatoSCI分析日记——T检验

💡 T检验是什么?

T检验是比较两组数据是否有差异的基本方法,
相信大多数人刚接触统计学时,第一个认识的就是它!

T检验常见的4种形式为:

  1. 独立样本T检验(参数)

  2. 非参数独立样本T检验

  3. 配对样本T检验(参数)

  4. 非参数配对样本T检验

📌 这里的“参数”指的是是否符合正态分布
根据统计原则,样本量 > 30正态检验通过 时,认为满足参数要求;否则应选择非参数方法。

👉 细分方法的选择将极大影响结果的可靠性(见图1)


✅ 01 独立样本 vs 配对样本

🔹 独立样本:
两组数据互不相关,每个个体只属于其中一组。

📍 典型场景:

  • 两种不同治疗方法(如 A组吃药 vs B组不吃药)

  • 男女两组对比(如 男性 vs 女性的平均身高)

  • 不同班级对比(如 A班 vs B班 的学生成绩)

🔸 配对样本:
同一组个体在不同时间或条件下的重复测量,数据成对出现。

📍 典型场景:

  • 实验前后对比(如 训练前后体重变化)

  • 同一患者服用不同药物前后的指标

  • 学生在两种复习策略下的成绩对比


📊 02 方法选择一览(图2)

不同数据类型、是否符合正态分布,对应的分析方法如下:

📌 快速判断用图2对照选择!


📈 03 结果解读 & 可视化

T检验结果的核心在于:p 值 < 0.05 = 差异显著

  • 独立样本: 说明两组数据存在显著差异

  • 配对样本: 表示两种处理方法之间存在差异

📊 通常会用箱线图来展示(见图3)

箱线图怎么看?

  • 核心:看 p 值

  • 其次:中位数线、上下须线、异常值只是辅助展示,不是重点


📌 04 结语

T检验适用于2组数据的对比
如需比较2组以上的数据,就需要引入 多重比较 方法。

📍 多重比较将在下一篇详细讲解,敬请期待!

欢迎来访TomatoSCI 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值