AI 以前一直生活在数字世界里,只能通过算法和软件来工作。现在,随着物理 AI 的出现,机器人和 AI 结合在一起,为我们带来了新的机会和挑战。随着 AI 的不断发展,大家越来越关注如何让机器更好地与人类互动,这就是物理 AI 的诞生。目前,大家最关注的 AI 类型是生成式 AI,这主要是人与机器之间的互动。然而,人们也在努力让机器与人类之间的互动变得更简单、更强大。这些机器与人类之间的互动都属于物理 AI 的范畴,也称为“物理代理”或“具身 AI”。它利用 AI 技术来解决机器与物理世界直接互动的问题。而且,物理 AI 通过不断观察和与物理世界的互动来提升自己的能力。
物理 AI 能够直接从传感器数据中学习和理解环境。它的主要输入来源是传感器和执行器。与生成式 AI 不同,生成式 AI 需要人类输入,而物理 AI 系统可以从许多工具中获取输入,比如摄像头、麦克风、温度计、惯性传感器、雷达和激光雷达。此外,生成式 AI 不受时间影响,但物理 AI 系统需要实时感知和推理环境,然后快速做出反应。
物理 AI 需要一个执行器,比如机器人臂、轮子或其他设备,在环境中移动或互动,并改变或操纵环境中的物体。物理 AI 系统比生成式 AI 系统更自主。它们不需要人类来启动行动,而是根据对环境的感知和编程来做出决策。因为学习和适应与自主性密切相关,很多物理 AI 系统都包含学习算法,以便识别环境变化、按需适应,并随着时间的推移提高性能。目前,大多数物理 AI 系统还只能处理特定任务或小环境,并且效果参差不齐。落地上,一个目前很火的例子是宇树科技的四足机器狗,可以爬山涉水,还可以以一连串高难度的体操动作亮相,包括原地旋转两周接倒立旋转三周半,以及一套流畅的托马斯全旋,侧空翻和 360 度跳跃转体等。
物理 AI 的互动系统与机器人技术紧密相连,使 AI 驱动的机器人能够在环境中自主感知、推理和行动。 传统上,机器人依赖于各种输入设备,比如摄像头、激光雷达、声纳和其他环境传感器。旧机器人系统与由物理 AI 驱动的机器人之间的主要区别在于决策的自主性。旧机器人是预编程的,只能按照硬编码的方式做出决策或反应。 而由物理 AI 驱动的机器人则依赖于实时数据,在环境不断变化的情况下当场做出决策,然后从这些决策中学习并适应类似情况。因此,这些机器人依赖于神经网络和深度学习来分析他们的经验,并改善未来的反应和互动。物理 AI 机器人采用先进的执行器,由 AI 和机器学习驱动,远远超越了当前的模型和设计,以便更好地与环境互动,在其中移动和操纵物体。
物理 AI 主要与周围的环境互动,而不一定是与人类互动。与生成式 AI 不同,生成式 AI 是通过提出问题来互动,物理 AI 则是根据传感器和执行器的输入在物理世界中操作和调整。当然,当物理 AI 与人类互动并自主运作时,安全和互动协议非常重要,从人类接近警报和碰撞避免到识别面部表情甚至尝试理解人类意图的能力。物理 AI 还需要来自各个领域专家的合作,汲取机器人技术、计算机视觉、ML、控制理论和机械工程的精华,以开发一个正常运作的系统。 最后,由于其持续的互动性质,物理 AI 的独特系统需要强大的处理能力,以便在动态环境变化期间有效地做出响应,这需要能够在毫秒内做出决策的软件算法和硬件。
相信,当大模型发展到一定程度,物理AI和生成式AI集成越紧密,那么在相关领域,其行为则会更具人类特性。
以下是未来将从物理 AI 中受益的一些应用领域:
-
机器人技术和自动化。 持续的进步使机器人更加灵巧和敏捷,在执行复杂任务时具有更高的效率和精确度。一个特别的应用领域是手术室中的机器人,机器人协助医生进行精细的手术。
-
自动驾驶汽车。 道路上已经有自动驾驶汽车。结果好坏参半,人们对自动驾驶的信心仍然很低. 随着传感器技术的改进和神经网络对其系统的训练,预计会有更安全、更高效的道路网络,自动驾驶汽车的数量不断增加,包括卡车和无人机。
-
人机协作。 上面提到的手术机器人只是物理 AI 补充和补充人类活动的一个例子。预计在其他人类不可用、处于过多危险或无法执行任务的情况下,人类对物理 AI 的应用会更大,例如需要巨大力量的任务。
-
环境监测。 如前所述,机器人不需要休息。由物理 AI 驱动的自主无人机和机器人全天候监测环境——从工厂车间到农场——它们可以发现灾难、有毒积聚、火灾、水位变化和其他资源变化。
-
AI 驱动的制造。 制造业已经采用了机器人技术,但具有物理 AI 的先进系统提供了更大的生产过程优化、增强的质量控制、更灵活和多功能的制造系统以及及时制造支持。
-
技术扩展。 物理 AI 目前与其他技术如 5G 网络、边缘计算、增强现实和物联网相隔离。 将物理 AI 添加到远程连接中,可以实现新的技术能力、实时数据处理、增强的连接性和远程系统的改进决策能力。