从商业流程到科学研究,人工智能代理能够处理海量数据集、优化流程并辅助决策。然而,尽管取得了这些进展,构建和定制大型语言模型(LLM)代理对于大多数用户来说仍然是一个艰巨的任务。主要原因在于人工智能代理平台需要编程技能,这将使用人群限制在极少数人范围内。全球仅有0.03%的人口具备必要的编程技能,因此,对于非技术用户来说,大规模部署大型语言模型代理是难以企及的。尽管人工智能在不同行业中日益成为必不可少的工具,但非编程专业人士却无法充分发挥其潜力,技术能力与可用性之间存在巨大差距。人工智能代理开发的一个主要问题是依赖编程技能。
现有的系统如LangChain和AutoGen是专门为具有编程经验的开发者设计的,这使得非技术个体设计或定制人工智能代理变得复杂。这一障碍减缓了人们使用人工智能自动化,因为大多数专业人士不具备应用它所需的技术能力。尽管有记录良好的工具,但创建一个人工智能代理通常需要复杂的提示工程、API集成和调试,这使得更广泛的受众难以企及。问题在于创建一个不需要编码但仍然为用户提供灵活且强大人工智能驱动自动化的系统。
当前的框架大多在开发者导向的环境中运行,需要深厚编程专业知识。例如,LangChain在大型语言模型应用创建中被广泛使用,但需要预先了解API调用和结构化数据处理知识。其他选项如AutoGen和CAMEL通过允许基于角色的代理交互来增强大型语言模型功能。然而,它们也依赖于非技术用户可能难以实施的技术设置。尽管这些工具使人工智能自动化有所改进,但在大多数情况下,它们仍然无法让非编码用户使用。缺乏真正的零代码解决方案限制了人工智能的普及,阻碍了其在非开发者中的更广泛采用。
香港大学的研究人员引入了AutoAgent,这是一个全自动、零代码的人工智能代理框架,旨在弥合这一差距。AutoAgent使用户能够仅通过自然语言命令创建和部署大型语言模型代理,消除了对编程专业知识的需求。与现有解决方案不同,AutoAgent作为一个自我开发的代理操作系统,用户可以用自然语言描述任务,系统会自主生成代理和工作流。该框架包含四个关键组件:代理系统实用程序、由大型语言模型驱动的可操作引擎、自我管理文件系统和自我对弈代理定制模块。这些组件使用户能够在不编写一行代码的情况下,为各种应用场景创建人工智能驱动的解决方案。AutoAgent旨在实现人工智能开发的民主化,使智能自动化能够为更广泛的受众使用。
AutoAgent框架通过先进的多代理架构运行。其核心是由大型语言模型驱动的可操作引擎,它将自然语言指令转换为结构化工作流。与需要手动编码的传统框架不同,AutoAgent根据用户输入动态构建人工智能代理。自我管理文件系统通过自动将各种文件格式转换为可搜索的知识库,实现高效的数据处理。这确保了人工智能代理能够跨多个来源检索相关信息。自我对弈代理定制模块通过迭代优化代理功能,进一步增强系统适应性。这些组件使AutoAgent能够在没有人类干预的情况下执行复杂的、人工智能驱动的任务。这种方法显著降低了人工智能代理开发的复杂性,使其对非程序员也易于使用,同时保持高效率。
AutoAgent的性能评估显示了相对于现有框架的显著改进。它在GAIA基准测试中获得了第二高的排名,这是一个针对通用人工智能助手的严格评估,总体准确率为55.15%。在第一级任务中,AutoAgent实现了71.7%的准确率,超过了领先的开源框架,如Langfun代理(60.38%)和FRIDAY(45.28%)。系统在检索增强生成(RAG)方面的有效性也值得注意。在MultiHop-RAG基准测试中,AutoAgent实现了73.51%的准确率,超过了LangChain的RAG实现(62.83%),同时保持了显著较低的错误率,仅为14.2%。AutoAgent在复杂的多代理任务中展示了卓越的适应性,在结构化问题解决方面超过了Magentic-1和Omne等模型。
AutoAgent的研究提出了几个关键结论,突出了其在人工智能自动化方面的影响和进步:
-
AutoAgent消除了对编程专业知识的需求,使用户能够仅通过自然语言命令创建和部署大型语言模型代理。
-
AutoAgent在GAIA基准测试中排名第二,在第一级任务中实现了71.7%的准确率,超过了多个现有框架。
-
AutoAgent在MultiHop-RAG基准测试中实现了73.51%的准确率,展示了改进的检索和推理能力。
-
该系统动态生成工作流并编排人工智能代理,使复杂任务中的问题解决更加高效。
-
AutoAgent成功实现了金融分析、文档管理等实际应用的自动化,展示了其多功能性。
-
通过使大型语言模型代理创建对非技术用户也易于使用,AutoAgent显著扩展了人工智能的可用性,超越了软件工程师和研究人员的范围。
-
自我管理文件系统允许无缝的数据集成,确保人工智能代理能够高效地检索和处理信息。
-
自我对弈代理定制模块通过迭代学习优化代理性能,减少了手动干预。
详见
论文:https://arxiv.org/abs/2502.05957
github:https://github.com/HKUDS/AutoAgent?tab=readme-ov-file