单源最短路径问题c++实现(贪心算法)

1.认真审阅题目,明确题目的已知条件和求解的目标;

给定一个有向带权图 G = (V,E),其中每条边的权是一个非负实数,另外,给定V中的一个顶点,称为源点。
计算从源点到所有其他点的最短路径长度,这里的路径长度指的是路径上经过的所有边上的权值之和。这个问题通常称为单源最短路径的问题。

2.问题建模;

3.算法设计;

Dijkstra算法思想:
按各个顶点与源点之间路径长度的递增次序,生成源点到各个顶点的最短路径的方法,即先求出长度最短的一条路径,再参照它求出长度次短的一条路径,以此类推,直到源点到其他各个顶点的最短路径全部求出为止。
算法设计:
假定源点u,顶点集合V被划分为两部分,集合S和V-S,其中S中的顶点到源点的最短路径的长度已经确定,集合V-S中所包含的顶点到源点的最短路径的长度待定,称从源点出发,只进过S中的点到达V-S中的点的路径为特殊路径,

4.编码实现;

#include <bits/stdc++.h>
using namespace std;
#define N 5
#define M 9999999 
void Dijkstra(int n, int v, int dist[], int p[], int c[][N+1])
{
	bool s[N+1];//顶点集合S
	for(int i = 1; i <= n; i++){
		dist[i] = c[v][i];//从源点到顶点i的最短特殊路径长度
		s[i] = false;
		
		if(dist[i] == M){
			p[i] = 0; // 从源点到顶点i的最短路径上千一个顶点 
		} 
		else
		{
			p[i] = v;
		}
	} 
	dist[v] = 0;
	s[v] = true;
	for(int i = 1; i < n; i++){
		int temp = M;
		int u = v;//上一顶点
		//找到具有最短特殊路径长度的顶点u
		for(int j = 1; j <= n; j++){
			if((!s[j]) && (dist[j] < temp))
			{
				u = j;
				temp = dist[j];
			}
		} 
		s[u] = true;
		//更新dist值
		for(int j = 1; j <= n; j++){
			if((!s[j]) && c[u][j] < M)
			{
				int newdist = dist[u] + c[u][j];
				if(newdist < dist[j]){
					dist[j] = newdist;
					p[j] = u;
				}
			}
		} 
	}
	
}
//输出最短路径v源点,i终点 
void Traceback(int v, int i, int p[])
{
	//源点等于终点,即找出全部路径
	if(v == i){
		cout << i;
		return;
	} 
	Traceback(v, p[i], p);
	cout << "->" << i; 
}

int main(){
	int v = 1;//源点 为1
	int dist[N+1];//从源点到顶点i的最短特殊路径长度 
	int p[N+1]; //从源点到顶点i的最短路径上其哪一个顶点
	//带权有向图的邻接矩阵,行和列从下标从1开始 
	int c[N+1][N+1];
	//输入:如果输入-1,代表两个点不是邻接点,初始化为M(代表无穷大) 
	cout << "带权有向图的邻接矩阵为:" << endl;
	for(int i = 1; i <= N; i++){
		for(int j = 1; j <= N; j++){
			cin >> c[i][j];
			if(c[i][j] == -1){
				c[i][j] = M;
			}
		}
	}
	//寻找最短路径 
	Dijkstra(N, v, dist, p, c);
	//输出
	cout << "源点1到源点5的最短路径长度为:" << dist[5] << endl; 
	cout << "路径为:" << endl;
	Traceback(1, 5, p);
	return 0;
}

5.测试数据;

-1 10 -1 30 100
-1 -1 50 -1 -1
-1 -1 -1 -1 10
-1 -1 20 -1 60
-1 -1 -1 -1 -1

第二组:

-1 30 10 30 60
-1 -1 10 80 -1
-1 -1 -1 -1 10
-1 -1 40 -1 70
-1 -1 -1 -1 -1

6.程序运行结果;

源点1到源点5的最短路径长度为:60
路径为:
1->4->3->5 

第二组:

源点1到源点5的最短路径长度为:20
路径为:
1->3->5

在这里插入图片描述
在这里插入图片描述

单源最短路径问题可以使用基于贪心算法的Dijkstra算法来解决。下面是解决该问题的步骤: 1. 初始化:将源点到所有其他点的距离初始化为无穷大,将源点到自身的距离初始化为0。 2. 选择:从未确定最短路径的点中选择距离最短的点作为当前点。 3. 更新:更新当前点的邻居节点的距离,如果从源点到当前点的距离加上当前点到邻居节点的距离小于源点到邻居节点的距离,则更新源点到邻居节点的距离。 4. 标记:将当前点标记为已确定最短路径的点。 5. 重复:重复2-4步骤,直到所有点都被标记为已确定最短路径的点。 下面是使用C++实现Dijkstra算法的代码: ```c++ #include <iostream> #include <vector> #include <queue> #include <limits.h> using namespace std; typedef pair<int, int> PII; const int N = 100010; int h[N], e[N], w[N], ne[N], idx; int dist[N]; bool st[N]; int n, m; void add(int a, int b, int c) { e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ; } void dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; priority_queue<PII, vector<PII>, greater<PII>> q; q.push({0, 1}); while (q.size()) { auto t = q.top(); q.pop(); int ver = t.second, distance = t.first; if (st[ver]) continue; st[ver] = true; for (int i = h[ver]; ~i; i = ne[i]) { int j = e[i]; if (dist[j] > distance + w[i]) { dist[j] = distance + w[i]; q.push({dist[j], j}); } } } } int main() { cin >> n >> m; memset(h, -1, sizeof h); while (m -- ) { int a, b, c; cin >> a >> b >> c; add(a, b, c); } dijkstra(); if (dist[n] == 0x3f3f3f3f) puts("-1"); else cout << dist[n] << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

允谦呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值