题目:
假定有20个有序数组,每个数组有500个数字,降序排列,数字类型32位uint数值,现在需要取出这10000个数字中最大的500个。
思路
(1).建立大顶堆,维度为数组的个数,这里为20(第一次 插入的是每个数组中最大的值,即第一个元素)。
(2).删除最大堆堆顶,保存到数组或者栈中,然后向最大堆插入删除的元素所在数组的下一个元素。
(3).重复第1,2个步骤,直到删除个数为最大的K个数,这里为500.
代码
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define ROWS 20
#define COLS 500
int data[ROWS][COLS];
void CreateData()
{
for(int i=0; i<ROWS; i++)
for(int j=0; j<COLS;j++)
data[i][j] = rand(); //生成随机元素
for( int i=0; i<ROWS; i++)
sort(data[i],data[i]+COLS, greater<int>()); //对每一行降序排列
}
//十分重要
struct Node
{
int *p; //指向某个列,因为要放入优先队列中,所以要比较大小,就用结构体封装了下
bool operator<(const Node &node) const
{
return *p < *node.p;
}
};
void OutMinData( int k)
{
struct Node arr[ROWS];
for(int i=0; i<ROWS;i++)
arr[i].p = data[i]; //初始化指针指向各行的第1列的地址
priority_queue<Node > queue( arr, arr+ROWS ); //使用优先队列,默认是大堆,此时需要调用node定义中的“<”重载函数
for( int i=0; i<k&&i<COLS; i++) //算法核心就是这个循环
{
Node temp = queue.top(); //取出队列中最大的元素
cout << *temp.p << " " <<endl;
queue.pop(); //从队列里删除
temp.p++; //对应行指针后移
queue.push( temp ); //这里面有log(ROWS)次操作,所以算法的总复杂度为O(klog(20))
}
}
int main()
{
CreateData(); //生成数据
int k=500;
OutMinData( k ); //输出k个元素,这里k不要大于列数COL,可以改进,去掉这个限制,不过会让程序不好懂,就没加
return 0;
}
分析
(1),压入大顶堆的元素为Node类型。因此创建大根堆时,需要重载“<”函数
(2).每次弹出最大值,压入新的值时。最多需要调整log(20)次,因此总共时间复杂度为O(500*log(20))
(3).sort()默认升序排列,因此需要加入仿函数greater<int>
(4)data[i]+j==&data[i][j]==*(data+i)+j,&data[i]==data+i
扩展
倘若非已经排序好的元素的同样数组求最大的前k个数。可以建立高度为log(k)的小根堆。遍历所有数组,每次删除根节点即最小的值,加入节点调整堆。时间复杂度为O(10000*log(500))
参考: