用一个简单的例子了解一下动态规划的思想:保存前面计算的值来计算后面的数值。
下面是一个笔试题:
在如下8*6的矩阵中,请计算从A移动到B一共有__种走法。要求每次只能向上或向右移动一格,并且不能经过P。
有多少种走法:
A:456
B:492
C:568
D:626
E:680
F:702
解析:
8*6的矩阵,从左下角A到右上角B,一共需要走12步,其中5步向上,7步向右,因此总的走法一共有C(12,5)=792种,但题目规定不能经过P,因此需要减去经过P点的走法。
经过P的路径分为两部分,从A到P,从P到B。
同理,从A到P的走法:C(6,2)=15;
同理,从P到B的走法:C(6,3)=20;
因此从A到B经过P点的走法有15*20=300种,
所以从A到B不经过P点的走法有792-300=492种。
这题其实可以用程序算出来:
简单的动态规划,由于第(i,j)的格子只能由第(i-1,y)和第(i,j-1)向上或者向右完成,那么,反过来,第(i,j)的走法就应该是两者之和。
dp[i][j] = dp[i][j-1] + dp[i-1][j];
程序代码:
int dp[100][100] = {0};
dp[1][0] = 1;
for(int i = 1; i <= 6; i++)
for(int j = 1; j <= 8; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
cout<<dp[6][8] - dp[4][4] * dp[3][5]<<endl;