格子走法-动态规划

用一个简单的例子了解一下动态规划的思想:保存前面计算的值来计算后面的数值。

下面是一个笔试题:

在如下8*6的矩阵中,请计算从A移动到B一共有__种走法。要求每次只能向上或向右移动一格,并且不能经过P。

有多少种走法:

A:456
B:492
C:568
D:626
E:680
F:702

解析:
8*6的矩阵,从左下角A到右上角B,一共需要走12步,其中5步向上,7步向右,因此总的走法一共有C(12,5)=792种,但题目规定不能经过P,因此需要减去经过P点的走法。
经过P的路径分为两部分,从A到P,从P到B。
同理,从A到P的走法:C(6,2)=15;
同理,从P到B的走法:C(6,3)=20;
因此从A到B经过P点的走法有15*20=300种,
所以从A到B不经过P点的走法有792-300=492种。

这题其实可以用程序算出来:
简单的动态规划,由于第(i,j)的格子只能由第(i-1,y)和第(i,j-1)向上或者向右完成,那么,反过来,第(i,j)的走法就应该是两者之和。
dp[i][j] = dp[i][j-1] + dp[i-1][j];


程序代码:

	int dp[100][100] = {0};
	dp[1][0] = 1;
	
	for(int i = 1; i <= 6; i++)
		for(int j = 1; j <= 8; j++){
			dp[i][j] = dp[i-1][j] + dp[i][j-1];  
		}
	
	cout<<dp[6][8] - dp[4][4] * dp[3][5]<<endl;



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值