数字图像处理期末考试题
满分100分,考试时间120分钟
一、简答题(概念理解,共5题,每题4分,共20分)
- 图像增强的目的是什么?列举两种常见的图像增强方法。
- 简述直方图均衡化的基本思想及其对图像视觉效果的影响。
- 形态学处理中,开运算和闭运算的主要区别是什么?
- 图像分割的定义是什么?列举两种基于阈值的分割方法。
- 简述无损压缩与有损压缩的核心区别,并各举一例编码算法。
二、计算题(共2题,每题10分,共20分)
-
给定灰度图像大小为4×4,像素矩阵如下:
50 50 100 100
50 50 100 100
0 0 50 50
0 0 50 50对其进行直方图均衡化,写出计算过程及结果矩阵。
-
对二值图像矩阵(0为背景,1为目标)应用3×3正方形结构元素的腐蚀操作,写出结果矩阵。
原矩阵:0 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
三、实验分析题(共2题,每题15分,共30分)
- 实验中分别用Roberts算子和Canny算子对同一图像进行边缘检测,结果发现Canny算子检测到的边缘更连续且噪声更少。请分析原因。
- 对一幅低对比度医学图像进行分割时,分别采用全局阈值法和区域生长法,发现区域生长法的分割结果更准确。请结合算法原理分析这一现象。
四、综合分析题(共1题,30分)
设计一个车牌识别系统的预处理流程,要求包含以下环节:
- 图像增强(如对比度调整)
- 去噪(如形态学操作)
- 车牌区域定位(如边缘检测+形态学组合)
- 字符分割(如投影法)
请详细说明每个步骤的目的、具体方法及关键技术参数。
参考答案
一、简答题
-
目的:改善图像视觉效果或便于后续处理。方法:直方图均衡化、空间滤波(如中值滤波)。
-
思想:通过灰度级重新分布,使直方图趋于均匀。影响:增强对比度,但可能放大噪声。
-
开运算:先腐蚀后膨胀,消除小物体;闭运算:先膨胀后腐蚀,填充小孔洞。
实验补充:
在图像形态学处理中,结构元素(Structuring Element) 的形状直接影响操作的局部作用方式,进而决定对图像特征的保留、去除或增强效果。
- 矩形结构元素(各向同性):膨胀/腐蚀均匀影响所有方向,适合处理方形特征。
- 十字结构元素(各向异性):主要影响水平和垂直方向,对角方向变化较小,适合处理十字形结构。
- 圆形结构元素(各向同性):均匀作用于所有方向,能平滑边缘并保持圆形特征。
开运算消除小物体时,圆形结构元素更有效;闭运算填充孔洞时,矩形结构元素更均匀。
-
定义:将图像划分为互不相交的区域。方法:Otsu法、双峰阈值法。
-
无损压缩:信息无损失,如Huffman编码;有损压缩:允许信息损失,如JPEG。
二、计算题
- 直方图均衡化:
- 原灰度级分布:0(4), 50(8), 100(4)
- 累积分布函数:
s₀ = 4/16×(255) ≈ 64 → 64
s₁ = 12/16×255 ≈ 191 → 191
s₂ = 16/16×255 = 255 → 255
-
映射结果矩阵:
191 191 255 255
191 191 255 255
64 64 191 191
64 64 191 191
-
腐蚀结果矩阵:
0 0 0 0 0
0 1 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 0 0
三、实验分析题
- Canny优势:非极大值抑制抑制假边缘,双阈值连接断边,高斯滤波降噪。
- 区域生长法:适应局部灰度变化,避免全局阈值对光照不均的敏感性问题。
四、综合分析题
- 图像增强:CLAHE算法调整对比度,限制对比度参数ClipLimit=2.0。
- 去噪:开运算(3×3核)去除细小噪声。
- 定位:Sobel边缘检测+闭运算(5×1核)连接水平边缘,提取候选区域。
- 字符分割:垂直投影法找到字符间隙,结合形态学腐蚀分离粘连字符。