数字图像处理期末考试题

数字图像处理期末考试题

满分100分,考试时间120分钟


一、简答题(概念理解,共5题,每题4分,共20分)

  1. 图像增强的目的是什么?列举两种常见的图像增强方法。
  2. 简述直方图均衡化的基本思想及其对图像视觉效果的影响。
  3. 形态学处理中,开运算和闭运算的主要区别是什么?
  4. 图像分割的定义是什么?列举两种基于阈值的分割方法。
  5. 简述无损压缩与有损压缩的核心区别,并各举一例编码算法。

二、计算题(共2题,每题10分,共20分)

  1. 给定灰度图像大小为4×4,像素矩阵如下:

    50 50 100 100
    50 50 100 100
    0 0 50 50
    0 0 50 50

    对其进行直方图均衡化,写出计算过程及结果矩阵。

  2. 对二值图像矩阵(0为背景,1为目标)应用3×3正方形结构元素的腐蚀操作,写出结果矩阵。
    原矩阵:

    0 1 1 0 0
    1 1 1 1 0
    1 1 1 1 1
    0 1 1 1 0
    0 0 1 0 0


三、实验分析题(共2题,每题15分,共30分)

  1. 实验中分别用Roberts算子和Canny算子对同一图像进行边缘检测,结果发现Canny算子检测到的边缘更连续且噪声更少。请分析原因。
  2. 对一幅低对比度医学图像进行分割时,分别采用全局阈值法和区域生长法,发现区域生长法的分割结果更准确。请结合算法原理分析这一现象。

四、综合分析题(共1题,30分)

设计一个车牌识别系统的预处理流程,要求包含以下环节:

  1. 图像增强(如对比度调整)
  2. 去噪(如形态学操作)
  3. 车牌区域定位(如边缘检测+形态学组合)
  4. 字符分割(如投影法)
    请详细说明每个步骤的目的、具体方法及关键技术参数。

参考答案

一、简答题

  1. 目的:改善图像视觉效果或便于后续处理。方法:直方图均衡化、空间滤波(如中值滤波)。

  2. 思想:通过灰度级重新分布,使直方图趋于均匀。影响:增强对比度,但可能放大噪声。

  3. 开运算:先腐蚀后膨胀,消除小物体;闭运算:先膨胀后腐蚀,填充小孔洞。

    实验补充

    在图像形态学处理中,结构元素(Structuring Element) 的形状直接影响操作的局部作用方式,进而决定对图像特征的保留、去除或增强效果。

    1. 矩形结构元素(各向同性):膨胀/腐蚀均匀影响所有方向,适合处理方形特征。
    2. 十字结构元素(各向异性):主要影响水平和垂直方向,对角方向变化较小,适合处理十字形结构。
    3. 圆形结构元素(各向同性):均匀作用于所有方向,能平滑边缘并保持圆形特征。

    开运算消除小物体时,圆形结构元素更有效;闭运算填充孔洞时,矩形结构元素更均匀。

  4. 定义:将图像划分为互不相交的区域。方法:Otsu法、双峰阈值法。

  5. 无损压缩:信息无损失,如Huffman编码;有损压缩:允许信息损失,如JPEG。

二、计算题

  1. 直方图均衡化
    • 原灰度级分布:0(4), 50(8), 100(4)
    • 累积分布函数:

s₀ = 4/16×(255) ≈ 64 → 64
s₁ = 12/16×255 ≈ 191 → 191
s₂ = 16/16×255 = 255 → 255

  • 映射结果矩阵:

    191 191 255 255
    191 191 255 255
    64 64 191 191
    64 64 191 191

  1. 腐蚀结果矩阵

    0 0 0 0 0
    0 1 1 0 0
    0 1 1 1 0
    0 0 1 0 0
    0 0 0 0 0

三、实验分析题

  1. Canny优势:非极大值抑制抑制假边缘,双阈值连接断边,高斯滤波降噪。
  2. 区域生长法:适应局部灰度变化,避免全局阈值对光照不均的敏感性问题。

四、综合分析题

  1. 图像增强:CLAHE算法调整对比度,限制对比度参数ClipLimit=2.0。
  2. 去噪:开运算(3×3核)去除细小噪声。
  3. 定位:Sobel边缘检测+闭运算(5×1核)连接水平边缘,提取候选区域。
  4. 字符分割:垂直投影法找到字符间隙,结合形态学腐蚀分离粘连字符。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qianqianaao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值