前言
这是我在学习数字图像处理这门课程时,从网络上以及相关书籍中搜集到的一些题目, 这些题目主要是针对期末考试的。 做题之前你需要注意以下几点:
- 这篇文章整理了第4种题型,即简答题。
- 如果你需要答案,可以到我的个人主页下载对应的资源(整理不易,希望大家支持)。
- 为了提高复习的效率,这篇文章从考试可能涉及到的各个知识点出发, 将题目按照知识点归类,对于一些重要的知识点还附有知识框图。
- 这些题目是由我个人整理分类的,所以难免会有一些题目的分类出现错误或者不准确,还请大家理解,也可以在评论区指出
- 这一部分中,有一些题目会做标星处理,这些是我在整理资料的时候以及平时的学习过程中,根据出题频次以及知识点本身的重要性来划分的等级,一共有3个等级,分别是一星、二星、三星,其中三星的题目最为重要,大家最好能掌握这些题目(注:由于这些都是我个人标注的重点,因此仅供参考,请大家以各自学校的重点为准)
知识点01:图像的相关概念
在这一节中,我整理了一些有关图像的知识点以及题目,主要包括图像的定义,图像的分类,图像的表示,图像的特征,图像的冗余等等。下面是本节的知识框架以及常考的题目。
- 什么是图像?
- 什么是物理图像、模拟图像、数字图像?
- 如何表示模拟图像、数字图像?其中各分量的含义又是什么?(★)
- 图像是如何分类的?
- 数字图像的基本类型有哪些?分别有什么特点?(★★★)
- 图像的数据结构有哪些?分别有什么特点?
- 图像的特征有哪些?分别有什么特点?
- 图像的冗余主要有哪几种?分别有什么特点?(★★)
- 简述图像的成像模型(★★)
- 如何表示静止图像、单色图像、平面图像?
- 解释I = f (x,y,z,λ,t) 中各分量的含义?(★)
- BMP图像文件由哪些部分组成?
- 说出图像、视频、图形及动画等视觉信息之间的联系和区别
- 连续图像和数字图像如何相互转换?
- 简述数字图像信息的特点
知识点02:数字图像处理基本概念
在这一节中,我整理了一些有关数字图像处理基本概念的题目,主要是一些宏观性的题目,包括数字图像处理的层次、系统组成、特点、算法、目的、应用、研究内容等等。下面是本节的知识框架以及常考的题目。
- 数字图像处理分为哪几个层次?具体内容包括什么?分别有什么特点?(★★★)
- 低级图像处理包括什么?有什么特点?(★★)
- 中级图像处理包括什么?有什么特点?(★★)
- 高级图像处理包括什么?有什么特点?(★★)
- 数字图像处理系统由哪几个部分组成?分别有什么作用?(★)
- 数字图像处理的特点是什么?(★★)
- 数字图像处理主要包括哪几种算法?
- 数字图像处理的主要方法有哪2种?分别有什么特点?
- 数字图像处理未来的发展动向是什么?
- 数字图像处理需要进一步研究的问题是什么?
- 数字图像处理的目的是什么?(★★★)
- 数字图像处理的应用领域有哪些?试着举出几个方面?(★)
- 数字图像处理的主要研究内容由哪些?简要说明它们的作用?(★★)
- 数字图像处理的几何、平滑、锐化、退化、复原、分割处理分别是用来干什么的?
- 数字图像处理的意义是什么?(★★)
- 数字图像处理与计算机图形学的区别与联系是什么?
- 数字图像处理常用的开发工具有什么?
- 数字图像处理常用的应用软件有哪些?
- 请以一个具体应用(例如OCR、自动驾驶、人脸识别打卡等等)为例,说明数字图像处理的3个层次都是如何体现出来的?(★)
知识点03:视觉原理、马赫带效应、电磁波谱
在这一节中,我整理了一些有关人眼的知识点以及题目,主要包括人眼的结构、人的视觉过程、人眼的成像细胞、电磁波谱、马赫带现象等等。下面是本节的知识框架以及常考的题目。
- 人眼都有哪些结构?简述它们的特点?(★)
- 简述人的视觉过程。(★)
- 当在白天进入一个黑暗剧场时,在能看清并找到空座位时需要适应一段时间,试述发生这种现象的视觉原理。(★★)
- 人眼成像细胞有哪些,有何特点?(★★★)
- 什么是马赫带?什么是马赫带效应?如何利用这一效应对图像进行处理?(★★)
- 哪些现象表明人眼的感觉亮度不是入射光强的简单的函数?(★★)
- 简述人眼的机理。
- 人观察如题图所示两幅形状相同的目标图像时,会觉得哪一个目标更亮一些?与实际亮度有无不同?简述理由。[黑色(最暗)灰度值定为 0,白色(最亮)灰度值定为 255]
- 简述三基色的原理。
- 电磁辐射波有哪些?按照波长从长到短排列
- 什么是单色光、复合光、消色光?
知识点04:数字化、分辨率
我整理了一些有关数字化的知识点以及题目,主要包括采样与量化的概念、原因、参数、准则,数字化器的组成、空间分辨率、灰度分辨率等等。下面是本节的知识框架以及常考的题目。
- 简述数字化的原因和过程?(★★)
- 采样、量化是什么意思?(★★★)
- 连续灰度值量化的种类有哪2种?分别有什么特点?
- 采样、量化参数与数字化图像间的关系是什么?(★★★)
- 采样间隔的大小对图像有什么影响?(★★)
- 量化等级的多少对图像有什么影响?(★★)
- 国际棋盘效应和假轮廓现象是因为什么导致的?(★★)
- 采样、量化的准则是什么?(★★)
- 对缓变的图像、细节丰富的图像如何采样、量化?
- 图像量化时,如果量化级比较小会出现什么现象?为什么?(★★)
- 简述均匀采样、均匀量化的原理。
- 数字化器的有哪些部分组成?
- 简述图像数字化的步骤,并说明分别会出现哪两种质量缺陷?请说明灰度变换缓慢的景物以及有大量细节的图像,在数字化时采用何种策略以确保图像质量。什么是假轮廓?
- 光圈越大,摄取的画面是否越亮?光圈的数字越小是否代表光圈越小?2.8 的光圈与5.6 的光圈,哪个画面更亮?光圈越小,画面是否越有立体感?
- 采样数、空间分辨率变化对图像视觉效果的影响是什么?
- 摄像机和数码相机分辨率受到哪些因素限制?是否越高越好?如何进一步提高分辨率?
- 什么是空间分辨率?什么是灰度分辨率?各有什么特点?(★★★)
- 什么是显示分辨率? 它取决于什么?
知识点05:直方图
在这一节中,我整理了一些有关直方图的知识点以及题目,主要包括直方图的概念、性质、应用;灰度直方图的概念、性质、应用;直方图修正最常用的2种方法:直方图均衡化和直方图规定化;图像的4个灰度特征以及均衡化后的变化等等。下面是本节的知识框架以及常考的题目。
- 什么是直方图?
- 直方图有哪些性质和应用?
- 什么是灰度直方图?(★★)
- 灰度直方图有哪些性质?(★★★)
- 灰度直方图有哪些应用?(★★)
- 直方图均衡化的基本思想是什么?目的是什么?有什么缺点?(★★★)
- 直方图规定化的基本思想是什么?主要困难是什么?(★)
- 设已用直方图均衡化技术对一幅数字图像进行了增强,如再用这一方法对所得结果增强会不会改变其结果?
- 假设对一幅数字图像进行直方图均衡处理。试证明(对直方图均衡后的图像)进行第二次直方图均衡处理的结果与第一次直方图均衡处理的结果相同。
- 灰度图像的直方图分布与对比度之间的关系是什么?(★★)
- 有哪些基本的灰度特征?对这些特征下的图进行均衡化,会产生什么变化?(★★★)
- 试解释为什么离散直方图均衡技术一般不能得到平坦的直方图? (★★★)
- 如题图所示两幅图像(白为 1,黑为 0)完全不同,但它们的直方图是相同的。假设每幅图像均用3×3 的平滑模板进行处理(图像边界不考虑,结果按四舍五入仍取 0 或 1)。
(1)处理后的图像的直方图还是一样么? (2)如果不一样,则求出这两个直方图。
知识点06:图像的基本运算
在这一节中,我整理了一些有关图像的基本运算的知识点以及题目,主要包括点运算、代数运算、几何运算、逻辑运算这4部分。下面是本节的知识框架以及常考的题目。
- 代数运算可以分为哪几类?分别有什么特点?(★★)
- 什么是图像的点运算?有什么特点?(★★)
- 什么是点运算?什么是空间运算?两者有什么区别?(★★)
- 简述图像增强点处理时,常用的3个基本类型函数。(★★★)
- 简述常用的3种像素灰度值插值的原理(★)
- 简述常用的3种像素灰度值插值的特点(★)
- 灰度变换包括哪几类?分别有什么特点?(★★★)
- 什么是对数变换?什么是指数变换?两者有什么区别?
- 图像旋转会引起图像失真吗?为什么?
- 简述直角坐标系中图像旋转的过程。
- 如何解决直角坐标系中图像旋转过程中产生的图像空穴问题?
- 差影法有什么用处?(★)
- 多图像平均法为什么可以去噪?它的主要难点是什么?(★★)
- 如何仅利用逻辑运算提取图像中一个长方形的轮廓?
知识点07:图像变换
在这一节中,我整理了一些有关图像变换的知识点以及题目,主要包括傅里叶变换、离散傅里叶变换、快速傅里叶变换、小波变换、正交变换等等。下面是本节的知识框架以及常考的题目。
- 进行图像傅里叶变换的目的何在?(★★★)
- 请简述快速傅里叶变换的原理。(★★)
- 简述傅里叶变换在图像的高通滤波中的应用原理。(★★★)
- 简述傅里叶变换在图像的低通滤波中的应用原理。(★★★)
- 简述小波变换在图像的压缩中的应用原理。
- 二维离散傅立叶变换的性质有哪些?(★★)
- 为什么通常绘制频域的功率谱时,常常进行c*log(K+1) 的操作?(★★★)
- 为什么常将0频率点移动到频谱的中间?(★★★)
- 如果不将0频率点移动到频谱的中间,功率谱的图是怎么样的?(★★)
- 在数学上及Matlab中如何将0频率点移动到频谱的中间?
- 傅里叶变换中F(0,0)有什么含义?
- 已知FFT计算结果为H(u,v) = M(u,v)+j N(u,v),其中M(u,v) 和 N(u,v) 都是实数矩阵,j是虚数单位。那么如何计算幅度?如何计算相角?如何计算功率谱?(★★)
- 为什么在频域绘制图形时,我们通常只绘制傅里叶变换的幅度图,而不是相角图?(★★)
- 相对于f(x,y)而言,经过以下新函数后,功率谱在图像上有什么变化?(★★) 1、f(ax,by) 2、f(x-a, y-b) 3、f顺时针旋转β度
- 二维离散傅里叶变换可分离性有什么意义?(★★)
- 离散的沃尔什变换与哈达玛变换之间有那些异同?(★★)
- 什么是小波?小波基函数和傅里叶变换基函数有何区别?
- 为何称小波变换为信号的“电子显微镜" ,如何实现该功能?
- 傅里叶变换、加窗傅里叶变换和小波变换的时间-频率特性有什么不同?
- 图像变换的目的(★★)
- 图像处理中正交变换的目的是什么?图像变换主要用于那些方面?
- 简述几种常用的图像变换(★★)
- 正交变换有什么特点?
知识点08:图像增强的基本概念
由于图像增强这个知识点涉及到的内容与题目非常多,因此,我将按照以下几个部分将它进一步的拆分。其中:
第1部分:图像增强中的图像平滑,图像锐化等基本概念,这些知识点将整理在本节当中,主要是一些宏观性的问题。
第2部分:灰度变换,这一部分已经在前面的小节“知识点05:直方图”中讲过了
第3部分:图像平滑,这一部分将整理在后面的小节“知识点09:图像平滑”中
第4部分:图像锐化,这一部分将整理在后面的小节“知识点10:图像锐化”中
第5部分:彩色图像增强,这一部分将整理在后面的小节“知识点11:彩色图像增强”中
- 图像增强包含哪些研究内容?
- 图像增强的目的是什么?(★★)
- 什么是图像平滑?如何判断和消除噪声?(★★)
- 图像的空间域平滑的原理是什么?有哪些方法?(★★)
- 为什么要在频率域研究图像增强?(★★★)
- 频域空间增强法的步骤是什么?
- 平滑模板和锐化模板的特点是什么?
- 频域域平滑、频率域锐化的原理是什么?(★★★)
知识点09:图像平滑
- 空域平滑法有哪些?简述它们的原理?(★★)
- 空域平滑法有哪些?它们分别有什么特点?(★★)
- 什么是中值滤波法?使用时需要注意什么?
- 频域低通滤波法有哪些?它们分别有什么特点?(★★★)
- 平滑模板有什么特点?
- 什么是均值滤波法?它有哪些优缺点?(★★★)
- 什么是中值滤波法?它有哪些优缺点?(★★★)
- 均值滤波和中值滤波分别擅长处理什么噪声?为什么?(★★★)
- 使用3*3、5*5均值模板处理同一张图片,处理后的图像看上去有什么区别?为什么?(★★)
- 比较算术均值滤波和几何均值滤波的原理和特点?
- 简述下列几种模板的物理意义
- 如题图所示256×256的二值图像(白为 1,黑为 0),其中的白条是 7 像素宽,210 像素高。两个白条之间的宽度是 17 像素,当应用下面的方法处理时图像的变化结果(按最靠近原则仍取 0 或 1)是什么?(图像边界不考虑)
(1)3×3 的邻域平均滤波。 (2)7×7 的邻域平均滤波。 (3)9×9 的邻域平均滤波。
(4)3×3 的中值滤波。 (5)7×7 的中值滤波。 (6)9×9 的中值滤波。
知识点10:图像锐化
- 空域锐化法有哪些?简述它们的原理?(★★)
- 高通滤波法有哪些?它们分别有什么特点?(★★★)
- 对于一张灰度图像,其梯度是如何定义的?图像梯度的物理意义是什么?(★)
- 利用梯度增强图像的方法有哪些?简述它们的原理?(★★)
- 图像锐化滤波的方法有哪些?(★★)
- 锐化模板操作(微分操作),需满足什么条件?(★★★)
知识点11:彩色图像处理
在这一节中,我整理了一些有关彩色图像处理的知识点以及题目,由于题目较多,分为3部分来看,分别为彩色图像增强、各种颜色模型、其他题目。下面是本节的知识框架以及常考的题目。
专题1:彩色图像增强
- 彩色图像增强、伪彩色图像增强、假彩色图像增强的原理是什么?(★★)
- 伪彩色图像增强、假彩色图像增强有什么异同?(★★★)
- 真彩色图像增强分为哪些类?分别有什么特点?
- 假彩色增强的意义是什么?
- 为什么伪彩色处理可以达到增强的效果呢?
- 讨论伪彩色在云图绘制和显示等气象领域的应用。
专题2:各种颜色模型
- 常用的彩色模型可分成哪两类?(★★)
- 什么是彩色的减性模型和加性模型?哪一种模型更适合用于显示、图片和打印场合?
- 列举RGB彩色模型的内容、优点、缺点、适用范围?(★★★)
- 列举CMY(K)彩色模型的内容、优点、缺点、适用范围?(★★★)
- 列举HSI彩色模型的内容、优点、缺点、适用范围?(★★★)
- 为什么有时需要将一种颜色数据表示形式转换为另一种形式?如何由RGB数值计算HSV 数值?
- YUV表色系的优点是什么?
- 为什么YUV表色系适用于彩色电视的颜色表示?
- 在彩色图像处理中,常使用HSI 模型,它适于做图像处理的原因是什么?(★★)
- HSI 颜色模型中,H、S、I 三个分量各代表什么意思?用这种模型表示彩色有什么特点?
- 一彩色打印机打印出来的照片的色彩和显示器上显示的色彩不一样,请给出至少 1 个可能的理由。
- 哪个颜色空间最接近人的视觉系统的特点?(★★)
- 如何表示图像中一点的彩色值?颜色模型起什么作用?
专题3:其他彩色图像处理问题
- 讨论彩色图像增强与灰度图像增强的关系。
- 三基色是什么?彩色三要素是什么?(★★)
- 比较灰度图像和彩色图像。
- 试述光的三原色与原料的三原色成色原理,并举例说明其各自的应用范围;如果有一计算机显示的颜色偏蓝,应如何调整颜色?(★★)
- 颜色的三属性是什么?说出三种不同的颜色模式?在颜色立体中,垂直轴、水平圆面圆周上的各点、从圆周到圆心过渡分别表示什么?
- 色调、色饱和度和亮度的定义是什么?在表征图像中一点的颜色时,各起什么作用?
- 什么是彩色图像的灰度化?实质是什么?
- 白平衡方法的主要原理是什么?
- 为什么在某些场合下要进行彩色量化?彩色图像的量化的依据是什么?
- 计算机中如何实现彩色直方图的匹配?
- 证明彩色图像的补色的饱和度分量不能单独地由输入图像的饱和度分量计算出来。(★★)
- 假定一个成像系统的监视器和打印机没有完美校准。在该监视器上看起来平衡的一幅图像打印时出现了青色。描述可矫正这种不平衡的通用变换。
- 抖动技术是如何利用只能显示较少颜色的设备重现含有丰富色彩图像的?
知识点12:图像压缩与编码
- 图像编码如何分类?
- 图像编码的基本原理是什么?
- 无损压缩有哪些?分别有什么特点?
- 有损压缩有哪些?分别有什么特点?
- 什么是图像的无损压缩?给出2种无损压缩算法.
- 简述霍夫曼Huffman编码的思想、编码步骤、编码特点?(★★★)
- 霍夫曼编码是最佳编码,为什么还要研究算术编码等其他熵编码算法?(★★)
- 费诺—仙农编码的编码步骤是什么?
- 算术编码有哪2种方式?算术编码有什么特点?(★★)
- 行程编码的原理是什么?适用范围是什么?(★★)
- 一维行程编码是什么?二维行程编码是什么?两者的区别是什么?(★★★)
- 从哪些方面说明数据压缩的必要性?(★)
- 正交变换编码的原理是什么?有哪些性质?
- 大部分视频压缩方法是有损压缩还是无损压缩?为什么?
- 如何衡量图像编码压缩方法的性能?
- 混合编码的优点是什么?(★)
- 有了离散傅里叶及其快速算法 FFT,为什么还要提出离散余弦算法 DCT 及其快速算法?为什么许多视频国际标准将 DCT 作为帧内编码的基本压缩算法?
- DCT变换编码的主要思想是什么?
- DCT变换编码的主要过程是什么?
- 从哪些方面说明图像数据压缩的可能性?(★)
- 数据没有冗余度能否压缩?为什么?
- 压缩编码算法很多,为什么还要采用混合压缩编码?请举例说明。
- JPEG编码是什么?
- 简述JPEG的压缩过程,并说明压缩的有关步骤中分别减少了哪种冗余?
- 根据 JPEG 算法说明JPEG 图像显示时会出现马赛克现象的原因。
- JPEG 的量化表有何作用?
- JPEG 算法中 DCT 系数采用 Z 字形重排有何作用?
- JPEG 为什么要进行彩色空间转换?
知识点13:图像退化、图像复原、图像噪声
- 什么是图像退化?什么是图像复原?图像的复原过程是什么?(★★)
- 图像退化模型是什么?
- 引起图像退化的原因有哪些?(★)
- 盲去卷积方法中,如何选择一个合适的PSF 值?
- 用维纳滤波的方法进行图像复原,不同的 PSF 对复原效果有什么影响?
- 线性位移不变系统是什么?(★)
- 常见的图像退化模型包含哪些种类?(★★)
- 用约束最小二乘方滤波复原时,不同的噪声强度、拉氏算子的搜索范围和约束算子对复原效果有何影响?
- 采用线性位移不变系统模型的原由是什么?
- 线性位移不变系统逆滤波恢复图像的原理是什么?
- 图像噪声是什么?(★★)
- 图像噪声按噪声与信号的关系是怎么分类的?它们各种有什么特点?(★★★)
- 图像噪声按概率密度函数可以分为哪几类?(★★★)
知识点14:图像边缘、边缘检测、边缘跟踪
- 图像边缘是什么?有哪些特征?
- Hough(哈夫)变换的原理是什么?有什么特点?
- 马尔算子σ的选择对模板大小和边缘检测结果有什么影响?
- Canny边缘检测器的原理是什么?
- 边缘跟踪是什么?连接边缘有2种方法?
- 基于图像边缘的算子分割技术的理论根据是什么?
- 什么是Hough 变换?试述采用Hough 变换检测直线的原理。
知识点15:形态学图像处理
- 什么是开运算和闭运算?各有什么特点?
- 腐蚀运算的处理过程是什么?
- 膨胀运算的处理过程是什么?
- 何为结构元素,选取时应考虑哪些原则?
- 典型的几何失真有哪些?
- 图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方?
- 若图像上任意两像素点的亮度电平值相等或者任意两时刻同一位置上的像素的亮度电平值相等,能够说明上述两种情况下像素相关吗?为什么?
- 数学形态学主要包括哪些研究内容?
- 基于数学形态学的图像处理有何特点?
知识点16:图像分割、图像识别
- 图像分割是什么?它的基本策略是什么?
- 常用的图像分割方法主要包括哪几类?各有什么特点?
- 什么是阈值分割技术?该技术适用于什么场景下的图像分割?
- 图像识别是什么?如何分类?
- 在位图切割中,就8比特图像的位平面抽取而言
(1)通常,如果将低阶比特面设为零值,对一幅图像的直方图有何影响?
(2)如果将高阶比特面设为零值将对直方图有何影响?
知识点17:其他题目
1、以下的三幅图像是分别通过 n=23,25 和 45 的方形均值掩模处理后的模糊图像。图(a)和(c)中左下角的垂直竖条被模糊了,但竖条与竖条之间的分割仍然很清楚。但图(b)中的竖条却已经融人了整幅图像,尽管产生这幅图像的掩模要比处理图像(c)的小得多,请解释这一现象。
2、试分析下列图像存在的质量问题,并提出相应的措施
3、逆滤波时,为什么在图像存在噪声时,不能采用全滤波?试采用逆滤波原理说明,并给出正确的处理方法。
4、下图是一个模糊的心脏的二维在线立体投影。已知每个图像右边底部的十字线是3像素宽,30像素长,在模糊之前有255的灰度值,请提供一个过程,指出怎样应用上述信息得到模糊函数H(u,v)。
5、将高频加强和直方图均衡相结合是得到边缘锐化和对比度增强的有效方法。上述两个操作的先后顺序对结果有影响吗?为什么?
6、一位考古学教授在做古罗马时期货币流通方面的研究,最近认识到4个罗马硬币对他的研究很关键,它们被列在伦敦大英博物馆的馆藏目录中。遗憾的是,他到达那里后,被告知现在硬币已经被盗了,幸好博物馆保存的一些照片来研究也是可靠的。但硬币的照片模糊了,日期和其它小的标记不能读出。模糊的原因是摄取照片时照相机散焦。作为一名图像处理专家,要求你帮助决定是否计算机处理能被用于复原图像,帮助教授读出这些标记。且用于拍摄该图像的原照相机一直能用,还有些同一时期其他有代表性的硬币。提出解决这一问题的过程。
7、 1) 简述频率域频谱图像与图像空间特征的联系;
2) 图 1 是经过中心化的频谱图,指出两个箭头所指区域分别对应原空间图像的哪些信息;
3) 图 2 是一个频谱域滤波器的强度图像,请指出是低通还是高通滤波器。
8、下图表示了一个基本的带有运动补偿的MPEG视频压缩编码器的框图,根据这个编码器画出相应的解码器的框图。
9、图像重建有几种模型?分别有什么特点?
10、仿射变换的性质是什么?
11、什么是4邻域、4邻接、4连接、4联通?
12、邻域和邻接关系如何?
13、根据你所学的知识,判断下面这些观点的对错,并简要的说明理由。
- 任意颜色模型都可以对所有颜色精准描述
- 计算(0,0 )和(3, 4) 之间的距离,是5
- 学了DIP之后,我就可以创业了,能够承接任何图像增强/复原业务,100%令客户满意
- 课上我们学习了空域图像增强、频域图像增强。所以对于任何一个实际应用,可以任选空域图像 增强、频域图像增强,效果都一样的
- matlab中,imread读入一个jpg照片文件,返回一个M*N的2D矩阵
14、图像信息的频域处理的特点是什么?
15、正是一年春花浪漫时,你拍了很多照片。请在以下各环境作答
- 有一个精彩瞬间,你手抖了,造成照片模糊并且你只照了这一张照片。你是否有方法对照片处理?
- 有一张照片,由于误碰,减少了曝光量,导致整体画面偏黑不足。你是否有方法对照片处理?
- 有的照片,你是隔着窗玻璃的窗纱拍摄的。照片上有窗纱,你是否有方法对照片处理?
专题01:各种频域滤波
- 比较各种低通、高通滤波器的特点?(★★★)
- 理想低通滤波器的截止频率选择不恰当时,会有很强的振铃效应。解释振铃效应的产生原因。(★★★)
- 在空间域进行数字图像排序滤波有哪些?各有什么特点?
- 振铃现象在图像上表现为什么?它是如何产生的?如何去除?为什么可以去除?(★★★)
- 同态处理的原理是什么?同态增晰法的原理是什么?
- 同态滤波的基本原理(基本步骤)是什么?(★★★)
- 同态滤波的目的是什么?(★★)
- 在天体研究所获得图像中有一些相距很远的对应恒星的亮点。由于大气散射原因而迭加的照度常使得这些亮点很难看清楚。如果将这类图像模型化为恒定亮度的背景和一组脉冲的乘积,根据同态滤波的概念设计一种增强方法将对应恒星的亮点提取出来。
- 以下几个实际应用场合,可以使用哪些方法处理? 1、OCR时,输入图像中文字有断笔 2、照相时,脸上的痘痘或者皱纹 3、卫星图片,周期性的扫描线明显
- 如果频域中平滑滤波器的传递函数为H(u,v)。请设计一个锐化滤波器传递函数?(★★)
专题02:各种边缘检测算子
- 二阶微分拉氏算子对噪声敏感,起到放大作用。实际边缘有噪声,会产生假边缘。怎么办?
- Canny算子的三大准则是什么?
- 简述几种常用边缘检测算子的特点?(★★)
- 梯度算子与Laplacian算子检测边缘的异同点?(★★)
- 试指出下列梯度算法对应的方法分别是哪一种算子。
- Laplacian 算子和 Laplacian 增强算子的区别是什么?(★★)
- 边缘点一阶导数与二阶导数分别有什么特点?有什么用途?(★★★)
- 一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同?(★★)
专题03:A和B的区别
- 图像处理、图像分析有什么区别?
- 图像增强、图像复原有什么区别?有什么联系?(★★★)
- 图像变换、图像几何变换有什么区别?(★★)
- 图像锐化、图像平滑有什么区别?有什么联系?(★★★)
- 图像分割、图像分类有什么区别?
- 视锥细胞、视杆细胞有什么区别?(试从数量、分布位置、特点3方面解答)(★★★)
- 采样、量化有什么区别?(★★★)
- 等间隔量化、非等间隔量化有什么区别?
- 点运算、空间运算有什么区别?(★★)
- 空间分辨率、灰度级分辨率有什么区别?(★★)
- 直方图均衡化、直方图规定化有什么区别?(★★)
- 客观保真度准则、主观保真度准则有什么区别?(★★)
- 区域分割、区域增长有什么区别?
- 数字图像处理、模拟图像处理有什么区别?(★★)
- 空间域增强法、频率域增强法有什么区别?(★★★)
- 频域域平滑、频率域锐化有什么区别?(★★★)
- 均值滤波、中值滤波有什么区别?(★★★)
- 伪彩色图像增强、假彩色图像增强有什么区别?有什么联系?(★★★)
- 彩色图像增强、灰度图像增强有什么区别?
- 灰度图像、彩色图像有什么区别?
- 一维行程编码、二维行程编码有什么区别?(★★)
- 加性噪声、乘性噪声有什么区别?有什么联系?(★★)
- 开运算、闭运算有什么区别?(★★)
- 边缘点一阶导数、二阶导数有什么区别?(★★)
- Laplacian 算子、 Laplacian 增强算子有什么区别?
- 二值图像、灰度图像、彩色图像有什么区别?
- 传统正交变换编码、小波变换编码有什么区别?
- 离散的沃尔什变换、哈达玛变换有什么区别?
- 将M幅图像相加求平均可以起到消除噪声的效果,用一个的模板进行平滑滤波也可以起到消除噪声的效果,试比较这两种方法的消噪效果。
- 边缘检测模板、锐化模板、平滑模板有什么区别?(★★)