银河麒麟桌面版操作系统修改主机名

1图形化方式修改

1.1在计算机图标上右键,选择属性

image.png

1.2修改

1.2.1点击修改计算机名

选择玩属性后会自动跳转到关于中,在计算机名中点击修改图标
本质就是设置里面的系统下的关于,我们右键计算机选择属性就直接跳转过来了
image.png

1.2.2修改系统名字

这里修改为user-pcOS
image.png

1.2.3重启生效

image.png

1.2.4重启后查看

计算机右键,选择属性查看
image.png
到这里就已经修改完毕了

1.3扩展:查看hosts文件

桌面右键选择打开终端,查看hosts文件,下面我们使用命令行修改这里面也要进行响应的修改
在使用图形化点击修改,修改完毕后,hosts文件中127.0.0.1对应的是user-pcOS的主机名
hosts文件是一个ip与域名(主机名)对应的一个文件,这里不重点研究这个,这个文件负责将主机名映射到相应的IP地址,所以通过命令行修改的时候,这个也要修改
image.png

2 命令行方式修改

通过vim或pluma编辑器进行编辑,在桌面版常使用pluma编辑,亦或者是你直接打开对应的目录,找到hostname文件,双击编辑也是可以的,双击默认使用的也是用pluma编辑器,方式不唯一,多种多样

2.1桌面右键打开终端

image.png

2.2输入命令修改

修改的文件是/etc/hostname文件

sudo pluma /etc/hostname
# sudo授权,输入密码后进行修改
# 修改完之后ctrl+s保存退出

image.png

2.3修改hosts中的相关信息

如果通过pluma无法修改,可以通过vim来尝试,我这里pluma出错了,修改完hostname就出错了,也修改不了其他的,,重启之后正常了,这不重要,也可以通过vim来进行修改,vim命令如果不会使用当我没说,这里不讲解vim怎么使用

修改完后保存退出
image.png

或者使用vim修改
image.png
image.png

2.4重启生效

重启后查看,命令行查看生死用hostname命令查看
image.png

### KV缓存工作原理 KV缓存的工作机制依赖于键值对的存储和检索方式。对于大型语言模型(LLM),这种技术允许将训练期间获得的信息保存下来,在后续推理过程中能够迅速访问这些数据,减少不必要的重复运算并提升处理效率[^2]。 具体来说,当涉及到生成序列的任务时,如果不采用任何优化措施,则每次都需要重新计算历史上下文中涉及的所有K(Key)和V(Value)矩阵,这无疑增加了大量的冗余操作。通过引入KV缓存方案,可以在一定程度上缓解这个问题——即只保留必要的部分进行更新,并利用之前已经存在的结果来加速新输入项的响应时间[^3]。 ### 应用场景 在实际应用中,KV缓存特别适用于那些需要频繁调用相同或者相似模式的数据查询场合。例如,在自然语言处理领域内的自动问答系统里,它可以帮助更快地给出针对特定问题的答案;而在机器翻译任务方面,则能有效缩短目标语句构建所需的时间开销。 值得注意的是,像Hugging Face Transformers这样的开源框架也提供了方便易用的功能接口让用户可以根据需求灵活开启或关闭KV缓存功能。通常情况下,默认设置为启用状态(use_cache=True),这意味着只要条件合适就会尽可能多地运用到这项技术所带来的性能增益[^4]。 ### 大规模模型推理流程中的角色 在一个典型的大规模预训练模型执行解码的过程中,整个过程大致分为多个连续阶段完成。其中就包含了如何有效地管理和使用KV缓存以确保高效运作的部分。虽然具体的分段数目可能因不同架构设计有所差异,但总体思路都是围绕着怎样最大限度发挥缓存优势展开讨论[^5]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "distilgpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "Once upon a time," inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(inputs["input_ids"], max_length=50, use_cache=True) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅水鲤鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值