算法
文章平均质量分 78
千天夜
一个热爱算法的码农
展开
-
激活函数解析:神经网络背后的“驱动力”
在神经网络中,每个神经元都会接收来自前一层神经元的输入信号,这些输入信号经过加权和求和后,需要通过激活函数进行处理。激活函数的作用是决定神经元是否应该被激活,从而影响输出值。简单来说,激活函数决定了一个神经元对其输入信号的反应程度。激活函数是神经网络中不可或缺的组成部分,它们让网络能够学习复杂的非线性关系。不同的激活函数具有不同的特点,适用于不同的任务和数据集。在实际应用中,ReLU 和其变种(如 Leaky ReLU)因其简单高效而成为深度学习中最常用的激活函数。原创 2024-11-13 23:04:23 · 813 阅读 · 0 评论 -
YOLO系列基础(二)Bottleneck瓶颈层原理详解
bottleneck层最初是在ResNet网络中初次提出,通过降低计算量使得神经网络网络深度可以进一步增加。下图为瓶颈层的结构图左侧是没有瓶颈层的残差网络,对于残差网络我们放置下一篇介绍,此处不用管这个看似很NB的名称。右侧则是称为有瓶颈层的残差网络。有啥区别呢?左侧仅仅是做了一层常规的3*3卷积核的卷积层,激活之后再次通过另外一次3*3卷积核的卷积层。右侧则是通过了一层1*1的卷积层、激活之后再通过3*3的卷积层激活之后再一次通过1*1的卷积层。我为什么要复述一遍……。原创 2024-11-08 15:08:15 · 766 阅读 · 0 评论 -
YOLOv8相较于YOLOv5有哪些改进?
综上所述,YOLOv8相比YOLOv5在算法上进行了多项改进,这些改进使得YOLOv8在目标检测任务中表现出更高的性能和准确性。原创 2024-11-07 16:20:20 · 562 阅读 · 0 评论 -
EasyOCR(二)如何使用本地检测模型craft?手撕官方代码!
最近在进行开发的时候,需要针对craft模型进行模型迁移操作,然而针对模型迁移训练后的模型却无法直接被EasyOCR调用。本文针对上诉问题进行深入探索,并解决。固有此文。若想直接知晓答案的,可以跳转到部分。原创 2024-11-05 10:25:13 · 1050 阅读 · 0 评论 -
多信号多信号范围的遍历策略——N进位器策略
最近在进行开发的时候,遇到一个问题:不同的功能,对应的触发信号不同,不同的信号对应的信号范围也不同。如何在功能测试的时候测试到所有的信号呢?例如:功能A,受信号S1S2控制,S1信号值范围为[0,4]S2值范围为[0,255]功能B,受信号S3控制,S3信号值范围为[0,4]功能C,受信号S1……Sn控制,S1信号值范围为[0,4]……Sn值范围为[0,n]原创 2024-10-24 13:26:02 · 276 阅读 · 0 评论 -
YOLO系列之多阶段训练策略(解决识别不平衡问题)
在进行识别模型训练的时候,往往后期在实际运行中发现一些类别图像识别不佳的情况,此时需要做数据的重新收集与标注。那么此时的训练策略是什么呢?因为若是把数据集整合起来统一训练,就会导致其他没有问题的类别在多次重复训练中发生过拟合现象,而且对于需要更多训练的类别也会因为loss太低而得不到好的训练效果。经常出现这个类别修好,别的类别又出现效果不佳的现象。原创 2024-10-17 13:38:16 · 374 阅读 · 0 评论 -
EasyOCR(一)超强超便捷的OCR开源算法介绍与文本检测模型CRAFT微调方法
EasyOCR——超强超便捷的OCR开源算法介绍与文本检测模型CRAFT微调方法原创 2024-10-16 16:43:27 · 1241 阅读 · 0 评论 -
LangChain(九)让大模型稳定返回JSON格式的方法!
最近在验证系统功能的时候,分类大模型总是没法返回正式的JSON格式输出导致信息解析失败。查阅了有关知识,Prompt工程还挺复杂。CRISPE框架Zero-ShotFew-ShotsCOT SCTOTStep-Back等多种方法。但是实际上我尝试后发现效果均不佳。总是有偶尔几次,大模型没有按照要求返回。一次偶然的机会,我发现JSON Schema这种东西,这个是针对JSON格式的数据格式进行的格式化描述。更关键的是几乎所有大模型都针对这个东西进行了专门的训练。原创 2024-08-06 16:31:03 · 2290 阅读 · 4 评论 -
LangChain(八)构建多Agent的AI系统-实战!
好久没有更新LangChian系列的文章了,最近一直在给我们的项目进行集成工作。代码集成、系统优化、多线程操作等等……交给一个算法工程师真的好吗……不得已恶补了一下这方面的知识,写了很多有关于系统集成、代码规范、多线程编程方面的文章。时至今日终于告一段落……针对项目中实际编写的有关多链路由多Agent的模块,总结后也有了一些心得体悟,遂有此文。本篇对于多链路由、工具调用、大模型构建方式进行了复习,并给出实战代码!最合适的函数,不是官网现成的函数,而是你自己搭建的啊。原创 2024-08-02 16:04:23 · 1469 阅读 · 3 评论 -
Transformer!自注意力机制的高层级理解Attention Is All You Need!
序列建模:在处理语言建模和机器翻译等序列问题时,传统上我们使用循环神经网络(RNN)或长短时记忆网络(LSTM)等模型。这些模型通过递归地处理序列中的每个元素来捕捉序列的依赖关系。在很久很久以前~~,大模型针对上下文的理解使用的是循环神经网络。循环神经网络比普通的神经网络多了一个特殊的隐藏层,用以保存上一次运行的输出。当前输入之前的输出结果此时相当于模型对于当前的运算会参考之前的输出结果……类似的,也就可以用于NLP任务上,这样模型在预测当前单词的时候会参考之前的文本。原创 2024-07-26 13:16:14 · 1012 阅读 · 0 评论 -
国内外自动驾驶算法原理浅谈
国内厂商选择的方式成型快,但上限低。端到端的方式成型较慢,但是一旦预训练完成,将会疯狂迭代成长。但是其实……勤能补拙,不断加规则,总有一天也能应付99%的情况。原创 2024-07-23 16:22:21 · 882 阅读 · 0 评论 -
LangChain(七)让大模型拥有记忆!新手向
随着前面几篇内容的写作,对于大模型的chain的概念、工具调用、路由操作。我想大家都有了一定程度的了解和熟悉。本篇我们回归大模型本身,将有代码表象出发,逐步讲解至本质。给大家清晰大模型记忆功能的原理和操作方式。任然是新手向~一、大模型记忆功能原理浅谈从本质上来说,LLM大模型的基础原理是自然语言处理算法,即:给出一部分文本,进行后续的扩写or整句话的补全。从这个角度来看,大模型是文本相似度矩阵计算中的概率学问题,和记忆能力根本不沾边。原创 2024-07-15 16:11:50 · 1824 阅读 · 0 评论 -
LangChain(六)LLMRouteChain的基本原理和构建方式-新手向
随着前面几篇博客的阅读,我想大家已经对如何构建一条完整的链有了初步的了解。此时实际上已经覆盖了大多数的应用场景,各位看客不妨结合实际,尝试落地一下。产品实际出来的那一刻,成就感会不小哦。但是对于一些更复杂的场景,单一的链已经无法完成任务,很多场景常常需要多个功能支持,此时就需要构建多个链。那么对于多个链的操作我们就需要额外的工具!那就是路由链!一、路由链。原创 2024-07-12 13:32:52 · 1660 阅读 · 0 评论 -
LangChain(五)工具调用的底层原理进阶!依旧纯新手向~
随着第三篇的内容,我们跟进到了大模型调用工具的开发与原理,并浅尝辄止了一下大模型调用工具的原理!本篇我们上接上文,继续此部分的内容,我们主要讲解有关大模型调用工具的原理!我们会尽可能的把LangChain高度抽象的代码还原,把每一个步骤都尽可能的说清楚!大家感兴趣的话可以看一下第四篇的内容~其实不看也没事啦,看了理解起来会更快而已。本篇最大的用途是,对于一些不支持LangChain工具调用的大模型,我们依旧可以使用本方案工具调用!直接用LangChain集成好的,依旧是千帆大模型~import os。原创 2024-07-10 16:37:37 · 1834 阅读 · 2 评论 -
LangChain(四)工具调用的底层原理!给大模型按上双手吧!(新手向)
Langchain 工具调用!@tool装饰器是什么鬼?工具调用原理是个啥??新手向!原创 2024-07-08 16:06:29 · 1913 阅读 · 0 评论 -
LangChain(三)基础问答大模型,从LLMchain开始了解chain!纯新手向
依然很简单对不对?但是不知道大家有没有这种疑惑,为什么要这么干?让用户直接和大模型对接不好吗?实际上……prompt的好坏直接关系到大模型返回内容的好坏。一个背景清晰、逻辑清晰、需求清晰、关键词准确的prompt大概率会得到理想的回复。相同的,一个背景不清晰、逻辑混乱、需求不清、关键词不准确的prompt很大概率会得到牛头不对马嘴的回复所以该部分最主要的用途是:通过一系列的选择题or填空题,让用户自己填写相关的内容,然后整理成一份完美的prompt,再交给大模型,最终获取良好的回复~原创 2024-07-05 17:17:52 · 1049 阅读 · 2 评论 -
LangChain(一)构建本地数据检索问答Agent,新手向
在如今大模型如火如荼的现在,作为算法工程师,不整点AI大模型怎么说得过去,然而作为一个纯纯的门外汉,两眼一抹黑。在此摸着石头过河,留下细微足迹,以便后来人参考和嘲笑。原创 2024-07-04 11:01:26 · 1242 阅读 · 0 评论 -
LangChain(二)基础问答大模型,纯新手向
LangChain作为一个高度抽象的大模型工具链框架,最本质的功能就在于链的使用。本系列博客将从最基本的大模型开始,一步一步构建出诸多链,完成诸多功能。原创 2024-07-05 16:34:50 · 1202 阅读 · 0 评论 -
KDtree高维空间特征向量分类树的缺陷与补救方案
最近在做高维特征向量查找比对的过程中,由于数据库内的数据过于庞大,从头遍历效率太低,故想要寻找一些快速的高维空间向量的查找方式。经过调研与学习,笔者发现有球树、KDtree等多种高维空间向量查找方式,但是都存在一个共性的问题,即:在分类边界容易出现分类错误的现象发生。故在本篇笔者提出了一种新的高维空间向量查找方式,希望可以对读者有新的启发。原创 2024-06-18 18:49:56 · 494 阅读 · 0 评论 -
闪烁与常亮的符号状态判断机制(状态机算法)
在视觉项目中,经常要判断目标的状态,例如:符号的不同频率闪烁、常亮等。然而常规的视觉算法例如YOLO,仅仅只能获取当前帧是否存在该符号,而无法对于符号状态进行判断,然而重新写一个基于时序的卷积神经网络又未免太过了,而且效果也往往低于预期。所以笔者通过借鉴操作系统的状态转换策略,想了一个符号状态的状态机转换算法。原创 2024-06-12 19:27:52 · 726 阅读 · 0 评论 -
YOLO算法检测模型训练参数大合集!!再也不用看不懂超参啦!
YOLO算法检测模型训练参数大合集!!再也不用看不懂超参啦!原创 2024-05-28 14:01:58 · 1315 阅读 · 2 评论 -
YOLO算法输出图像含义以及理解
YOLO输出图像及其示意,all you need is here !!原创 2024-05-28 13:22:53 · 1406 阅读 · 0 评论 -
机器学习,解决数据倾斜问题的实用策略!
数据倾斜问题!All you need is here!!原创 2024-05-20 16:07:41 · 701 阅读 · 0 评论 -
多源多点货车路径规划问题MSMP,蚁群算法
遗传算法适用于复杂的路径规划问题,可以处理多个仓库、多个目标点,以及不同的约束条件(如车辆容量、时间窗口等)。现在的导航系统,仅有固定的a点到b点之间的单源导航,就算是增加途径点,本质上也是单源的路径规划算法。蚁群算法适用于具有多个目标点的复杂环境,可以处理多仓库、多目标点的路径规划问题。适用于单个车辆的多仓库、多目标路径规划的两种有效算法:遗传算法和蚁群算法。在单个车辆的多仓库、多目标路径规划中,遗传算法可以用于搜索最优的路径组合。在单个车辆的多仓库、多目标路径规划中,蚁群算法可以用于搜索最短路径。原创 2024-05-07 10:55:03 · 621 阅读 · 0 评论 -
基于M3E模型的文本句嵌入与文本分类----提高语音技术的泛化能力
在很多传统场景下,文本的泛化能力往往的评价一个产品是否优异的标准和软实力。在传统的方案往往是采取不断添加预设关键词的方式来增加泛化能力,然鹅很明显,泛化能力存在一个上限,对于没有提前预设的命令,将不会收到任何反馈。很多嵌入式的系统虽然因为各种各样的能力(性能受限等)暂时没办法直接搭载大模型能力(步子大了容易扯着蛋),但是把大模型的一部分功能拆下来使用,便可以给产品进行极大的赋能。采用大模型文本嵌入的方案,将一句话映射为一个向量,通过向量之间余弦相似度比对的方案可以很好的完善泛化能力。原创 2024-04-10 13:25:48 · 558 阅读 · 0 评论 -
合并石头的最低成本(递归+dp记忆化搜索)
有N堆石头排成一排,第i堆中有stones[i]块石头。每次移动(move)需要将K堆石头合并为一堆,而这个移动的成本为这K堆石头的总数。找出把所有石头合并成一堆的最低成本。如果不可能,返回-1。原创 2023-04-04 21:33:56 · 156 阅读 · 0 评论 -
使子数组元素和相等(中位数贪心+裴蜀定理)超详细
使子数组元素和相等(中位数贪心+裴蜀定理)超详细原创 2023-04-03 17:17:03 · 387 阅读 · 0 评论 -
从尾到头打印链表(单向链表逆序)
链表逆序,从尾到头打印链表原创 2023-02-25 12:29:44 · 121 阅读 · 0 评论 -
C++ 容器map详解and例题:复杂链表的复制
C++,map详解和例题复杂链表的复制原创 2023-02-25 14:52:18 · 771 阅读 · 0 评论 -
二叉树中和为某一值的路径
二叉树中和为某一值的路径,深度优先遍历,BFS原创 2023-02-25 11:48:04 · 55 阅读 · 0 评论 -
青蛙跳台阶问题(动态规划入门/斐波那契数列)
动态规划、斐波那契数列、leetcode‘青蛙跳台问题原创 2023-03-05 11:22:39 · 370 阅读 · 0 评论 -
何以包邮?(动态规划:0-1背包问题)
何以包邮?(动态规划:0-1背包问题)原创 2023-03-06 15:35:58 · 3143 阅读 · 1 评论 -
把数字翻译成字符串(动态规划C++)
把数字翻译成字符串(动态规划C++)原创 2023-03-05 20:23:32 · 210 阅读 · 0 评论 -
礼物的最大价值(动态规划、二维数组)
礼物的最大价值(动态规划、二维数组)原创 2023-03-05 15:04:33 · 105 阅读 · 0 评论 -
以图判树(并查集)
以图判树(并查集)原创 2023-02-24 11:56:43 · 203 阅读 · 1 评论 -
使字符串平衡的最少删除次数(暴力枚举or动态规划)
使字符串平衡的最少删除次数(暴力枚举or动态规划)原创 2023-03-06 21:28:50 · 162 阅读 · 0 评论